Question 1.2.3: Let e1=[1 0] and e2=[0 1]. show that Span {e1,e2} = R^2.

Let \vec{e_{1}}=\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] and \vec{e_2}=\left [ \begin{matrix} 0 \\ 1 \end{matrix} \right ]. Show that Span \left\{\vec{e_{1}},\vec{e_{2}}\right\}=\mathbb{R} ^{2} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We need to show that every vector in \mathbb{R} ^{2} can be written as a linear combination of the vectors \vec{e_{1}} and \vec{e_{2}}. We pick a general vector \vec{x}=\left [ \begin{matrix} x_{1} \\ x_{2} \end{matrix} \right ] in\ \ \mathbb{R} ^{2} We need to determine whether there exists c_{1} , c{2} ∈ \mathbb{R} such that

\left [ \begin{matrix} x_{1} \\ x_{2} \end{matrix} \right ]=c_{1}\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] +c_{2}\left [ \begin{matrix} 0 \\ 1 \end{matrix} \right ]

We observe that we can take c_{1}=x_{1} and c_{2}=x_{2} That is, we have

\left [ \begin{matrix} x_{1} \\ x_{2} \end{matrix} \right ]=x_{1}\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] +x_{2}\left [ \begin{matrix} 0 \\ 1 \end{matrix} \right ]

So, Span \left\{\vec{e_{1}},\vec{e_{2}}\right\}=\mathbb{R} ^{2} .

Related Answered Questions