Let \vec{e_{1}}=\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] and \vec{e_2}=\left [ \begin{matrix} 0 \\ 1 \end{matrix} \right ]. Show that Span \left\{\vec{e_{1}},\vec{e_{2}}\right\}=\mathbb{R} ^{2} .
Let \vec{e_{1}}=\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] and \vec{e_2}=\left [ \begin{matrix} 0 \\ 1 \end{matrix} \right ]. Show that Span \left\{\vec{e_{1}},\vec{e_{2}}\right\}=\mathbb{R} ^{2} .
We need to show that every vector in \mathbb{R} ^{2} can be written as a linear combination of the vectors \vec{e_{1}} and \vec{e_{2}}. We pick a general vector \vec{x}=\left [ \begin{matrix} x_{1} \\ x_{2} \end{matrix} \right ] in\ \ \mathbb{R} ^{2} We need to determine whether there exists c_{1} , c{2} ∈ \mathbb{R} such that
\left [ \begin{matrix} x_{1} \\ x_{2} \end{matrix} \right ]=c_{1}\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] +c_{2}\left [ \begin{matrix} 0 \\ 1 \end{matrix} \right ]We observe that we can take c_{1}=x_{1} and c_{2}=x_{2} That is, we have
\left [ \begin{matrix} x_{1} \\ x_{2} \end{matrix} \right ]=x_{1}\left [ \begin{matrix} 1 \\ 0 \end{matrix} \right ] +x_{2}\left [ \begin{matrix} 0 \\ 1 \end{matrix} \right ]So, Span \left\{\vec{e_{1}},\vec{e_{2}}\right\}=\mathbb{R} ^{2} .