Question 2.5.4: Match the following descriptions with each of the diagrams g...

Match the following descriptions with each of the diagrams given in figure. Fields are near the interface, but on opposite sides of the boundary. Vectors are drawn to scale.

(a) Medium 1 and medium 2 are dielectrics with \varepsilon_{1}>\varepsilon_{1}.

(b) Medium 1 and medium 2 are dielectrics with e., \varepsilon_{1}<\varepsilon_{1}.

(c) Medium 2 is a perfect conductor

(d) Impossible

(e) Medium 1 is a perfect conductor.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Fig.1 D N_{1}-D N_{2}=P_{S}

 

\begin{aligned}&\text { So } D N_{1}=P S . \Rightarrow E_{N 1}=P_{S} / E \\&E_{t 1}=E_{t 2}=0 \\&E_{1}=E_{t 1}+E_{N 1}=0+P_{S} / E=P_{S} / E\end{aligned}

Fig.2 D t_{2}>D t_{1}

 

\begin{aligned}&\text { As, } E_{t 1}=E_{t 2} \\&E_{2}>E_{1}\end{aligned}

Fig.3 \varepsilon_{1}>E_{1}

Fig.4  H_{1}=0, J=H_{2} A / m

Fig.5 E_{N 2}>E_{N 1}, E t_{1} \uparrow E t_{2}.

which is not a possible, boundary condition.

V_{3}=\frac{Q}{4 \pi E_{x}}+\frac{2 Q}{4 \pi E(x-50)}                             (3)

at equilibrium \text { P.E. }=Q V_{1}+2 Q V_{2}+Q_{3} V_{3}=0 from equation (1) (2) and (3) 

\begin{aligned}&A\left[\frac{2 Q}{4 \pi E(50)}+\frac{Q_{3}}{4 \pi E(x)}\right] \\&+2 Q\left[\frac{Q}{4 \pi E(50)}+\frac{Q_{3}}{4 \pi E(x-50)}\right]\end{aligned}

 

+Q_{3}\left[\frac{Q}{4 \pi E(x)}+\frac{2 Q}{4 \pi E(x-50)}\right]=0                                (4)

\text { Solving equation (4), } Q=-50 Q^{3}

or Q_{3}=\frac{-1}{50} Q

so,  x(x-50)=(x+25) \Rightarrow x^{2}-50 x-x+25=0                   (5)

\text { Solving (5) } x=\frac{-51 \pm \sqrt{(-51)^{2}-4(1)(25)}}{2}

= 30.5 of 0.5 cm
x = 0.5 cm as (0.5 << 50.5)
So,
x = 50.5 cm.

Related Answered Questions