CV Both tanks + pipe + valve Insulated : Q = 0 Rigid: W = 0
Energy Eq.3.5: m \left( u _{2}- u _{1}\right)=0-0 \quad \Rightarrow u _{2}= u _{1}= u _{ a 1}
Entropy Eq.6.37: m \left( s _{2}- s _{1}\right)=\int dQ / T +{ }_{1} S _{2 gen} ={ }_{1} S _{2 gen} \quad( dQ =0)
State 1: P _{1}, T _{1}, V _{ a } \quad \Rightarrow Ideal gas
m = PV/RT = (90 × 20 × 144)/ (55.15 × 720) = 6.528 lbm
State 2: V _{2}= V _{ a }+ V _{ b } ; \text { uniform final state } \quad v _{2}= V _{2} / m ; \quad u _{2}= u _{ a 1}
Ideal gas u (T) \Rightarrow u _{2}= u _{ a 1} \quad \Rightarrow T _{2}= T _{ a 1}= 7 2 0 R
P _{2}= mR T _{2} / V _{2}=\left( V _{1} / V _{2}\right) P _{1}=(2 / 3) \times 90= 6 0 lbf / in .^{2}
From entropy equation and Eq.6.19 for entropy change
\begin{aligned}S _{ gen } &= m \left( s _{2}- s _{1}\right)= m \left( {s _{ T 2}}^{o}-{ s _{ T 1}}^{o}- R \ln \left( P _{2} / P _{1}\right)\right.\\&= m \left(0- R \ln \left( P _{2} / P _{1}\right)=-6.528 \times 55.15 \times(1 / 778) \ln 2 / 3\right.\\&= 0 . 1 8 7 Btu / R\end{aligned}
Irreversible due to unrestrained expansion in valve P ↓ but no work out.
If not a uniform final state then flow until P _{2 b }= P _{2 a } and valve is closed.
Assume no Q between A and B
m _{ a 2}+ m _{ b 2}= m _{ a 1} ; \quad m _{ a 2} v _{ a 2}+ m _{ b 2} v _{ b 2}= m _{ a 1} v _{ a 1}
m _{ a 2} s _{ a 2}+ m _{ b 2} s _{ b 2}- m _{ a 1} s _{ a 1}=0+{ }_{1} S _{2 gen}
Now we must assume m _{ a 2} went through rev adiabatic expansion
1) V _{2}= m _{ a 2} v _{ a 2}+ m _{ b 2} v _{ b 2}; 2) P _{ b 2}= P _{ a 2};
3) s _{ a 2}= s _{ a 1}; 4) Energy eqs.
4 Eqs 4 unknowns : P _{2}, T _{ a 2}, T _{ b 2}, x = m _{ a 2} / m _{ a 1}
V _{2} / m _{ a 1}= x v _{ a 2}+(1- x ) v _{ b 2}= x \times\left( R T _{ a 2} / P _{2}\right)+(1- x )\left( R T _{ b 2} / P _{2}\right)
Energy Eq.: m_{a 2}\left(u_{a 2}-u_{a 1}\right)+m_{b 2}\left(u_{b 2}-u_{a 1}\right)=0
x C _{ v }\left( T _{ a 2}- T _{ a 1}\right)+(1- x ) C _{ v }\left( T _{ b 2}- T _{ a 1}\right)=0
x T _{ a 2}+(1- x ) T _{ b 2}= T _{ a 1}
Vol constraint: P _{2} V _{2} / m _{ a 1} R = x T _{ a 2}+(1- x ) T _{ b 2}= T _{ a 1}
P _{2}= m _{ a 1} R T _{ a 1} / V _{2}= m _{ a 1} R T _{ a 1} /\left(1.5 V _{ a 1}\right)=2 / 3 P _{ a 1}= 6 0 lb f / in .{ }^{2}
s _{ a 2}= s _{ a 1} \Rightarrow T _{ a 2}= T _{ a 1}\left( P _{2} / P _{ a 1}\right)^{ k -1 / k } =720 \times(2 / 3)^{0.2857}= 6 4 1 . 2 4 R
Now we have final state in A
V _{ a 2}= R T _{ a 2} / P _{2}=4.0931 ft / lbm ; m _{ a 2}= V _{ a } / v _{ a 2}=4.886 lbm
x = m _{ a 2} / m _{ a 1}=0.7485 \quad m _{ b 2}= m _{ a 1}- m _{ a 2}=1.642 lbm
Substitute into energy equation
T _{ b 2}=\left( T _{ a 1}- x T _{ a 2}\right) /(1- x )=954.4 R
\begin{aligned}{ }_{1} S _{2 gen} &= m _{ b 2}\left( s _{ b 2}- s _{ a 1}\right)= m _{ b 2}\left[ C _{ p } \ln \left( T _{ b 2} / T _{ a 1}\right)- R \ln \left( P _{2} / P _{ a 1}\right)\right] \\&=1.642[0.249 \ln (954.4 / 720)-(55.15 / 778) \ln (2 / 3)] \\&= 0 . 1 6 2 4 Btu / R\end{aligned}
Comment: This shows less entropy generation as the mixing part is out compared with the previous solution.
……………………………………
Eq.3.5: E_{2}-E_{1}={ }_{1} Q_{2}-{ }_{1} W_{2}
Eq.6.37 : S_{2}-S_{1}=\int_{1}^{2} d S=\int_{1}^{2} \frac{\delta Q}{T}+{ }_{1} S_{2 gen}
Eq. 6.19 : s_{2}-s_{1}=\left(s_{T 2}^{0}-s_{T 1}^{0}\right)-R \ln \frac{P_{2}}{P_{1}}