Question 6.236E: Nitrogen at 90 lbf/in.^2, 260 F is in a 20 ft^3 insulated ta...

Nitrogen at 90 lbf / in .^{2}, 260 F is in a 20 ft ^{3} insulated tank connected to a pipe with a valve to a second insulated initially empty tank of volume 10 ft ^{3}. The valve is opened and the nitrogen fills both tanks. Find the final pressure and temperature and the entropy generation this process causes. Why is the process irreversible?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

CV Both tanks + pipe + valve Insulated : Q = 0            Rigid: W = 0

Energy Eq.3.5:            m \left( u _{2}- u _{1}\right)=0-0 \quad \Rightarrow u _{2}= u _{1}= u _{ a 1}

Entropy Eq.6.37:        m \left( s _{2}- s _{1}\right)=\int dQ / T +{ }_{1} S _{2  gen} ={ }_{1} S _{2  gen}  \quad( dQ =0)

State 1:     P _{1}, T _{1},      V _{ a } \quad \Rightarrow      Ideal gas

m = PV/RT = (90 × 20 × 144)/ (55.15 × 720) = 6.528 lbm

State 2:    V _{2}= V _{ a }+ V _{ b } ;     \text { uniform final state } \quad v _{2}= V _{2} / m ; \quad u _{2}= u _{ a 1}

Ideal gas   u (T)  \Rightarrow u _{2}= u _{ a 1} \quad \Rightarrow T _{2}= T _{ a 1}= 7 2 0   R

P _{2}= mR  T _{2} / V _{2}=\left( V _{1} / V _{2}\right) P _{1}=(2 / 3) \times 90= 6 0   lbf / in .^{2}

From entropy equation and Eq.6.19 for entropy change

\begin{aligned}S _{ gen } &= m \left( s _{2}- s _{1}\right)= m \left( {s _{ T 2}}^{o}-{ s _{ T 1}}^{o}- R \ln \left( P _{2} / P _{1}\right)\right.\\&= m \left(0- R \ln \left( P _{2} / P _{1}\right)=-6.528 \times 55.15 \times(1 / 778) \ln 2 / 3\right.\\&= 0 . 1 8 7  Btu / R\end{aligned}

Irreversible due to unrestrained expansion in valve P ↓ but no work out.

If not a uniform final state then flow until P _{2 b }= P _{2 a } and valve is closed.

Assume no Q between A and B

m _{ a 2}+ m _{ b 2}= m _{ a 1} ; \quad m _{ a 2} v _{ a 2}+ m _{ b 2} v _{ b 2}= m _{ a 1} v _{ a 1}

 

m _{ a 2} s _{ a 2}+ m _{ b 2} s _{ b 2}- m _{ a 1} s _{ a 1}=0+{ }_{1} S _{2  gen}

 

Now we must assume m _{ a 2} went through rev adiabatic expansion

1) V _{2}= m _{ a 2} v _{ a 2}+ m _{ b 2} v _{ b 2};                    2) P _{ b 2}= P _{ a 2};

3) s _{ a 2}= s _{ a 1};                                    4) Energy eqs.

4 Eqs           4 unknowns :  P _{2}, T _{ a 2}, T _{ b 2}, x = m _{ a 2} / m _{ a 1}

V _{2} / m _{ a 1}= x v _{ a 2}+(1- x ) v _{ b 2}= x \times\left( R T _{ a 2} / P _{2}\right)+(1- x )\left( R T _{ b 2} / P _{2}\right)

Energy Eq.:    m_{a 2}\left(u_{a 2}-u_{a 1}\right)+m_{b 2}\left(u_{b 2}-u_{a 1}\right)=0

x  C _{ v }\left( T _{ a 2}- T _{ a 1}\right)+(1- x ) C _{ v }\left( T _{ b 2}- T _{ a 1}\right)=0

 

x  T _{ a 2}+(1- x ) T _{ b 2}= T _{ a 1}

Vol constraint:      P _{2} V _{2} / m _{ a 1} R = x T _{ a 2}+(1- x ) T _{ b 2}= T _{ a 1}

P _{2}= m _{ a 1}  R  T _{ a 1} / V _{2}= m _{ a 1}  R  T _{ a 1} /\left(1.5 V _{ a 1}\right)=2 / 3  P _{ a 1}= 6 0   lb f / in .{ }^{2}

 

s _{ a 2}= s _{ a 1} \Rightarrow T _{ a 2}= T _{ a 1}\left( P _{2} / P _{ a 1}\right)^{ k -1 / k  } =720 \times(2 / 3)^{0.2857}= 6 4 1 . 2 4  R

Now we have final state in A

V _{ a 2}= R  T _{ a 2} / P _{2}=4.0931   ft / lbm ;   m _{ a 2}= V _{ a } / v _{ a 2}=4.886   lbm

 

x = m _{ a 2} / m _{ a 1}=0.7485 \quad m _{ b 2}= m _{ a 1}- m _{ a 2}=1.642   lbm

 

Substitute into energy equation

T _{ b 2}=\left( T _{ a 1}- x  T _{ a 2}\right) /(1- x )=954.4   R

 

\begin{aligned}{ }_{1} S _{2  gen}  &= m _{ b 2}\left( s _{ b 2}- s _{ a 1}\right)= m _{ b 2}\left[ C _{ p } \ln \left( T _{ b 2} / T _{ a 1}\right)- R \ln \left( P _{2} / P _{ a 1}\right)\right] \\&=1.642[0.249 \ln (954.4 / 720)-(55.15 / 778) \ln (2 / 3)] \\&= 0 . 1 6 2 4   Btu / R\end{aligned}

Comment: This shows less entropy generation as the mixing part is out compared with the previous solution.

 

……………………………………

Eq.3.5: E_{2}-E_{1}={ }_{1} Q_{2}-{ }_{1} W_{2}

Eq.6.37 : S_{2}-S_{1}=\int_{1}^{2} d S=\int_{1}^{2} \frac{\delta Q}{T}+{ }_{1} S_{2 gen}

Eq. 6.19 : s_{2}-s_{1}=\left(s_{T 2}^{0}-s_{T 1}^{0}\right)-R \ln \frac{P_{2}}{P_{1}}

 

1

Related Answered Questions