Question 3.10: Obtain the position operator in the momentum basis (Equation...

Obtain the position operator in the momentum basis (Equation 3.110 =\left\langle \begin{matrix} p \begin {vmatrix}\hat{x} \\ \end{vmatrix} S(t)\\ \end{matrix} \right\rangle=action of position operator in p basis =i\hbar \frac{\partial\Phi}{\partial p} ) by inserting a resolution of the identity on the left-hand side

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\left\langle \begin{matrix} p\begin{vmatrix} \hat{x} \\\end{vmatrix} S(t) \\ \end{matrix} \right \rangle=\left\langle p \begin{matrix} \begin {vmatrix} \hat{x}\int{dx} \\ \end{vmatrix} x \\ \end{matrix} \right\rangle \left\langle \begin{matrix} x|| S(t) \\ \end{matrix} \right\rangle 

=\int{\left\langle \begin{matrix} p|x|x \\ \end {matrix} \right\rangle }\left\langle \begin{matrix} x|S(t) \\ \end{matrix} \right\rangle dx

where I’ve used the fact that is an eigenstate of \hat{x} (\hat{x} |x〉 =x|x〉) ; x can then be pulled out of the inner product (it’s just a number) and

\left\langle \begin{matrix} p\begin{vmatrix} \hat{x} \\\end{vmatrix} S(t) \\ \end{matrix} \right \rangle=\int{x\left\langle \begin{matrix} p|x \\ \end{matrix} \right\rangle } \Psi (x,t)dx

=\int{x\frac{e^{-ipx/\hbar }}{\sqrt{2\pi \hbar } } } \Psi (x,t)dx

=i\hbar \frac{\partial}{\partial p} \int{\frac{e^{-ipx/\hbar }}{\sqrt{2\pi \hbar } } } \Psi (x,t)dx

Finally we recognize the integral as \Phi (p,t) (Equation 3.54 [\Phi (p,t)=\frac{1}{\sqrt{2\pi \hbar }}\int_{-\infty }^{\infty } e^{-ipx/\hbar }\Psi (x,t)dx].).

 

 

Related Answered Questions