Question 24.1: One hundred test specimens made of grey cast iron FG 300 are...

One hundred test specimens made of grey cast iron FG 300 are tested on a universal testing machine to determine the ultimate tensile strength \left(S_{u t}\right) of the material. The results are tabulated as follows:

Frequency Class interval (N/mm²)
2 261–280
12 281–300
50 301–320
32 321–340
4 341–360

Calculate: (i) the mean; (ii) the variance; and (iii) the standard deviation for this sample.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Step I Mean

f_{i} X_{i}^{2} f_{i} X_{i} Frequency
\left(f_{i}\right)
Class mark
\left(X_{i}\right)
145800 540 2 270
1009200 3480 12 290
4805000 15500 50 310
3484800 10560 32 330
490000 1400 4 350
9934800 31480 100 Total

From Eq. 24.2,

\mu=\frac{\sum f_{i} X_{i}}{\sum f_{i}}                 (24.2)

\mu=\frac{\sum f_{i} X_{i}}{\sum f_{i}}=\frac{31480}{100}=314.8 N / mm ^{2} .               (i).

Step II Variance

From Eq. 24.6,

S^{2}=\frac{\sum f_{i} X_{i}^{2}-\frac{\left(\sum f_{i} X_{i}\right)^{2}}{N}}{(N-1)}                        (24.6).

S^{2}=\frac{\sum f_{i} X_{i}^{2}-\frac{\left(\sum f_{i} X_{i}\right)^{2}}{N}}{(N-1)} .

=\frac{9934800-\frac{(31480)^{2}}{100}}{(100-1)} .

=251.47\left( N / mm ^{2}\right)^{2}                 (ii).

Step III Standard deviation

S=\sqrt{251.47}=15.86 N / mm ^{2} .                (iii).

Related Answered Questions