Question 10.28: One particle, of charge q1, is held at rest at the origin. A...

One particle, of charge q_{1}, is held at rest at the origin. Another particle, of charge q_{2}, approaches along the x axis, in hyperbolic motion:

x(t)=\sqrt{b^{2}+(c t)^{2}};

it reaches the closest point, b, at time t = 0, and then returns out to infinity.

(a) What is the force F_{2} \text { on } q_{2} (due to q1) at time t?

(b) What total impulse \left(I_{2}=\int_{-\infty}^{\infty} F_{2} d t\right) is delivered to q_{2} \text { by } q_{1}

(c) What is the force F_{1} \text { on } q_{1}\left(\text { due to } q_{2}\right) at time t?

(d) What total impulse  \left(I_{1}=\int_{-\infty}^{\infty} F_{1} d t\right) \text { is delivered to } q_{1} \text { by } q_{2} ? [Hint: It might help to review Prob. 10.17 before doing this integral. Answer: I_{2}=-I_{1}=\left.q_{1} q_{2} / 4 \epsilon_{0} b c\right]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { (a) } F _{2}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{1}{\left(b^{2}+c^{2} t^{2}\right)} \hat{ x }.

(This is just Coulomb’s law, since q_{1} is at rest.)

\text { (b) } I_{2}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \int_{-\infty}^{\infty} \frac{1}{\left(b^{2}+c^{2} t^{2}\right)} d t=\left.\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\left[\frac{1}{b c} \tan ^{-1}(c t / b)\right]\right|_{-\infty} ^{\infty}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} b c}\left[\tan ^{-1}(\infty)-\tan ^{-1}(-\infty)\right]

 

=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} b c}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{\pi}{b c}.

(c) From Prob. 10.20, E =-\frac{q_{2}}{4 \pi \epsilon_{0}} \frac{1}{x^{2}}\left(\frac{c-v}{c+v}\right) \hat{ x } . Here x
and υ are to be evaluated at the retarded time tr, which is given by c\left(t-t_{r}\right)=x\left(t_{r}\right)=\sqrt{b^{2}+c^{2} t_{r}^{2}} \Rightarrow c^{2} t^{2}-2 c t t_{r}+c^{2} t_{r}^{2}=b^{2}+c^{2} t_{r}^{2} \Rightarrow t_{r}=\frac{c^{2} t^{2}-b^{2}}{2 c^{2} t} . Note: As we found in Prob. 10.17, q_{2} first “comes into view” \text { (for } q_{1} \text { ) } at time t = 0. Before that it can exert no force on q_{1} , and there is no retarded time. From the graph of  t_{r} versus t we see that t_{r} ranges all the way from -\infty \text { to } \infty \text { while } t>0.

x\left(t_{r}\right)=c\left(t-t_{r}\right)=\frac{2 c^{2} t^{2}-c^{2} t^{2}+b^{2}}{2 c t}=\frac{b^{2}+c^{2} t^{2}}{2 c t}(\text { for } t>0) . \quad v(t)=\frac{1}{2} \frac{2 c^{2} t}{\sqrt{b^{2}+c^{2} t^{2}}}=\frac{c^{2} t}{x} , so

v\left(t_{r}\right)=\left(\frac{c^{2} t^{2}-b^{2}}{2 t}\right)\left(\frac{2 c t}{b^{2}+c^{2} t^{2}}\right)=c\left(\frac{c^{2} t^{2}-b^{2}}{c^{2} t^{2}+b^{2}}\right)(\text { for } t>0) . Therefore

\frac{c-v}{c+v}=\frac{\left(c^{2} t^{2}+b^{2}\right)-\left(c^{2} t^{2}-b^{2}\right)}{\left(c^{2} t^{2}+b^{2}\right)+\left(c^{2} t^{2}-b^{2}\right)}=\frac{2 b^{2}}{2 c^{2} t^{2}}=\frac{b^{2}}{c^{2} t^{2}}(\text { for } t>0) . \quad E =-\frac{q_{2}}{4 \pi \epsilon_{0}} \frac{4 c^{2} t^{2}}{\left(b^{2}+c^{2} t^{2}\right)^{2}} \frac{b^{2}}{c^{2} t^{2}} \hat{ x } \Rightarrow

 

F _{1}= \begin{cases}0, & t<0 \\ -\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{4 b^{2}}{\left(b^{2}+c^{2} t^{2}\right)^{2}} \hat{ x }, & t>0\end{cases}

 

\text { (d) } I_{1}=-\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} 4 b^{2} \int_{0}^{\infty} \frac{1}{\left(b^{2}+c^{2} t^{2}\right)^{2}} d . The integral is

 

\frac{1}{c^{4}} \int_{0}^{\infty} \frac{1}{\left[(b / c)^{2}+t^{2}\right]^{2}} d t=\frac{1}{c^{4}}\left(\frac{c^{2}}{2 b^{2}}\right)\left[\left.\frac{t}{(b / c)^{2}+t^{2}}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{1}{\left.\left[(b / c)^{2}+t^{2}\right)\right]} d t\right]=\frac{1}{2 c^{2} b^{2}}\left(\frac{\pi c}{2 b}\right)=\frac{\pi}{4 c b^{3}}

 

\text { So } I_{1}=-\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{\pi}{b c} \text {. }

(e)  F _{1} \neq- F _{2} , so Newton’s third law is not obeyed. On the other hand, I_{1}=-I_{2} in this instance, which suggests that the net momentum delivered from (1) to (2) is equal and opposite to the net momentum delivered from (2) to (1), and hence that the total mechanical momentum is conserved. (In general the fields might carry off some momentum, leaving the mechanical momentum altered; but that doesn’t happen in the present case.)

10.28a
10.28b

Related Answered Questions