Question 2.61: One way to obtain the allowed energies of a potential well n...

One way to obtain the allowed energies of a potential well numerically is to turn the Schrödinger equation into a matrix equation, by discretizing the variable x. Slice the relevant interval at evenly spaced points \left\{x_{j}\right\} , with x_{j+1}-x_{j} \equiv \Delta x  , and let ψ_j ≡ ψ(x_j) (likewise V_j ≡ V(x_j)) . Then

\frac{d \psi}{d x} \approx \frac{\psi_{j+1}-\psi_{j}}{\Delta x}, \frac{d^{2} \psi}{d x^{2}} \approx \frac{\left(\psi_{j+1}-\psi_{j}\right)-\left(\psi_{j}-\psi_{j-1}\right)}{(\Delta x)^{2}}=\frac{\psi_{j+1}-2 \psi_{j}+\psi_{j-1}}{(\Delta x)^{2}}        (2.195).

(The approximation presumably improves as Δx decreases.) The discretized Schrödinger equation reads

-\frac{\hbar^{2}}{2 m}\left(\frac{\psi_{j+1}-2 \psi_{j}+\psi_{j-1}}{(\Delta x)^{2}}\right)+V_{j} \psi_{j}=E \psi_{j} .      (2.196)

or

-\lambda \psi_{j+1}+\left(2 \lambda+V_{j}\right) \psi_{j}-\lambda \psi_{j-1}=E \psi_{j}, \quad \text { where } \quad \lambda \equiv \frac{\hbar^{2}}{2 m(\Delta x)^{2}} .      (2.197).

In matrix form,

H \Psi=E \Psi         (2.198).

where (letting  v_{j} \equiv V_{j} / \lambda ).

H \equiv \lambda\left(\begin{array}{cccccc} \ddots & & & & & & \\ & -1 & \left(2+v_{j-1}\right) & -1 & 0 & 0 & \\ & 0 & -1 & \left(2+v_{j}\right) & -1 & 0 & \\ & 0 & 0 & -1 & \left(2+v_{j+1}\right) & -1 & \\ & & & & & & \ddots \end{array}\right)     (2.199).

and

\Psi \equiv\left(\begin{array}{c} \vdots \\ \psi_{j-1} \\ \psi_{j} \\ \psi_{j+1} \\ \vdots \end{array}\right)           (2.200) .

(what goes in the upper left and lower right corners of H depends on the boundary conditions, as we shall see). Evidently the allowed energies are the eigenvalues of the matrix H (or would be, in the limit Δx → 0 ).

Apply this method to the infinite square well. Chop the interval (0 ≤ x ≤a) into N+1 equal segments (so that Δx  = a / (N+1)), letting x_0 ≡ 0   and x_{N+1} \equiv a . The boundary conditions fix \psi_{0}=\psi_{N+1}=0 , leaving

\Psi \equiv\left(\begin{array}{c} \psi_{1} \\ \vdots \\ \psi_{N} \end{array}\right)     (2.201).

(a) Construct the N × N matrix H ,for N=1 ,N=2, and N=3. (Make sure you are correctly representing Equation 2.197 for the special cases j=1 \text { and } j=N .)

(b) Find the eigenvalues of H for these three cases “by hand,” and compare them with the exact allowed energies (Equation 2.30).

E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}      (2.30).

(c) Using a computer (Mathematica’s Eigenvalues package will do it) find the five lowest eigenvalues numerically for N=10 and N=100, and compare the exact energies.

(d) Plot (by hand) the eigenvectors for N=1 , 2 and 3, nd (by computer, Eigenvectors) the first three eigenvectors for N=10 and N=100.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From Equation 2.197:

-\lambda \psi_{j+1}+\left(2 \lambda+V_{j}\right) \psi_{j}-\lambda \psi_{j-1}=E \psi_{j}, \quad \text { where } \quad \lambda \equiv \frac{\hbar^{2}}{2 m(\Delta x)^{2}} .      (2.197).

N=1: j=1:-\lambda \cancel{\psi_{2}}+(2 \lambda) \psi_{1}-\lambda \cancel{\psi_{0}}=E \psi_{1} \quad \Rightarrow \quad H =(2 \lambda) .

N=2:\left\{\begin{array}{l} j=1:-\lambda \psi_{2}+(2 \lambda) \psi_{1}-\lambda \cancel{\psi_{0}}=E \psi_{1} \\ j=2:-\lambda \cancel{\psi_{3}}+(2 \lambda) \psi_{2}-\lambda \psi_{1}=E \psi_{2} \end{array} \quad \Rightarrow\right. H =\left(\begin{array}{cc} 2 \lambda & -\lambda \\ -\lambda & 2 \lambda \end{array}\right) .

N=3:\left\{\begin{array}{l} j=1:-\lambda \psi_{2}+(2 \lambda) \psi_{1}-\lambda \cancel{\psi_{0}}=E \psi_{1} \\ j=2:-\lambda \psi_{3}+(2 \lambda) \psi_{2}-\lambda \psi_{1}=E \psi_{2} \\ j=3:-\lambda \cancel{\psi_{4}}+(2 \lambda) \psi_{3}-\lambda \psi_{2}=E \psi_{2} \end{array} \Rightarrow\right. H =\left(\begin{array}{ccc} 2 \lambda & -\lambda & 0 \\ -\lambda & 2 \lambda & -\lambda \\ 0 & -\lambda & 2 \lambda \end{array}\right) .

(b) Denote the eigenvalues by \tilde{E}_{n} :

N=1: \tilde{E}_{1}=2 \lambda=\frac{2 \hbar^{2}}{2 m(a / 2)^{2}}=\frac{8 \hbar^{2}}{2 m a^{2}} . The exact energies are E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}, \text { so } E_{1}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} ; the agreement is not too bad: 8 \approx \pi^{2}=9.87 .

N = 2 :

\operatorname{det}\left(\begin{array}{cc} 2 \lambda-\tilde{E} & -\lambda \\ -\lambda & 2 \lambda-\tilde{E} \end{array}\right)=0 \Rightarrow(2 \lambda- \tilde{E})^{2}-\lambda^{2}=0 \Rightarrow 2 \lambda-\tilde{E}=\pm \lambda .

\tilde{E}_{1}=2 \lambda-\lambda=\lambda=\frac{\hbar^{2}}{2 m(a / 3)^{2}}=\frac{9 \hbar^{2}}{2 m a^{2}} . This is better: 9 is closer to π² than 8 was.

\tilde{E}_{2}=2 \lambda+\lambda=3 \lambda=\frac{3 \hbar^{2}}{2 m(a / 3)^{2}}=\frac{27 \hbar^{2}}{2 m a^{2}} . The exact answer has 4π² = 39.5 instead of 27.

N = 3 :

\operatorname{det}\left(\begin{array}{ccc} 2 \lambda-\tilde{E} & -\lambda & 0 \\ -\lambda & 2 \lambda-\tilde{E} & -\lambda \\ 0 & -\lambda & 2 \lambda-\tilde{E}<br /> \end{array}\right)=0 \Rightarrow(2 \lambda-\tilde{E})^{3}-2 \lambda^{2}(2 \lambda-\tilde{E})=0 \Rightarrow 2 \lambda-\tilde{E}=0 \text { or } 2 \lambda-\tilde{E}=\pm \sqrt{2} \lambda .

\tilde{E}_{1}=2 \lambda-\sqrt{2} \lambda=\lambda(2-\sqrt{2})=\frac{(2-\sqrt{2}) \hbar^{2}}{2 m(a / 4)^{2}}=\frac{16(2-\sqrt{2}) \hbar^{2}}{2 m a^{2}} . This is better yet: 16(2-\sqrt{2})=9.37 .

\tilde{E}_{2}=2 \lambda=\frac{2 \hbar^{2}}{2 m(a / 4)^{2}}=\frac{32 \hbar^{2}}{2 m a^{2}} . Improving: the exact answer is 4π² = 39.5 instead of 32.

\tilde{E}_{3}=2 \lambda+\sqrt{2} \lambda=\lambda(2+\sqrt{2})=\frac{(2+\sqrt{2}) \hbar^{2}}{2 m(a / 4)^{2}}=\frac{16(2+\sqrt{2}) \hbar^{2}}{2 m a^{2}} ; 16(2+\sqrt{2})=54.6 \approx 9 \pi^{2}=88.8 .

(c)

h = Table [If [i == j, 2 λ, 0], \{i, 10\},\{j, 10\} ].

k = Table [If [i == j+1, – λ, 0], \{i, 10\},\{j, 10\} ].

m = Table [If [i == j-1, – λ, 0], \{i, 10\},\{j, 10\} ].

p = Table [h [ [i , j]] + k [[i,j]] + m [[i,j]] , \{i, 10\},\{j, 10\} ].

P = MatrixForm[%]

\left(\begin{array}{cccccccccc} 2 \lambda & -\lambda & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\lambda & 2 \lambda & -\lambda & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\lambda & 2 \lambda & -\lambda & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\lambda & 2 \lambda & -\lambda & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\lambda & 2 \lambda & -\lambda & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\lambda & 2 \lambda & -\lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\lambda & 2 \lambda & -\lambda & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\lambda & 2 \lambda & -\lambda & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\lambda & 2 \lambda & -\lambda \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\lambda & 2 \lambda \end{array}\right) .

λ=1

1

EIG = Eigenvalues [N[p]].

\left\{83.91899, 3.68251, 3.30972, 2.83083, 2.28463,1.71537, 1.16917, 0.690279, 0.317493, 0.0810141\right\} .

To get the eigenvalues, multiply by \lambda=\frac{\hbar^{2}}{2 m(a / 11)^{2}}=\left(\frac{121}{\pi^{2}}\right) E_{1} :

121 * EIG / (π^2).

\left\{848.0462, 45.147, 40.5767, 34.7056, 28.0092, 21.0302, 14.3339, 8.46272, 3.89242, 0.993221\right\} .

Thus the lowest five eigenvalues, in units of E_1 , are 0.9932, 3.8924, 8.4627, 14.3339, 21.0302, as compared to the exact values 1, 4, 9, 16, 25. Doing the same for N = 100:

h = Table [If [i == j, 2 λ, 0], \{i, 100\},\{j, 100\} ].

k = Table [If [i == j+1, – λ, 0], \{i, 100\},\{j, 100\} ].

m = Table [If [i == j-1, – λ, 0], \{i, 100\},\{j, 100\} ].

p = Table [h [ [i , j]] + k [[i,j]] + m [[i,j]] , \{i, 100\},\{j, 100\} ].

λ=1

1

EIG = Eigenvalues[N[p]]

10201 * EIG/(π^2).

{ 4133.31 , 4130.31 , 4125.32 , 4118.33 , 4109.36 , 4098.41 , 4085.5 , 4070.64 , 4053.84 , 4035.11 ,

4014.49 , 3991.97 , 3967.6 , 3941.39 , 3913.36 , 3883.55 , 3851.98 , 3818.69 , 3783.7,3747.04,

3708.77,3668.9,3627.49,3584.57,3540.18,3494.36, 3447.16,3398.63,3348.81,3297.75,

3245.5,3192.11,3137.63,3082.12,3025.62,2968.2,2909.9,2850.79,2790.92,2730.35,

2669.14,2607.35,2545.03,2482.25,2419.07,2355.55,2291.76,2227.74,2163.57,2099.3,

2035.011970.74,1906.57,1842.55,1778.75,1715.24,1652.06,1589.28,1526.96,1465.17,1403.96,

1343.39,1283.52,1224.41,1166.11,1108.69,1052.19, 996.679,942.201,888.81,836.559,

785.499,735.679,687.147,639.95,594.133,549.742,506.819,465.405,425.541,387.265,

350.614,315.624,282.328,250.76,220.948,192.922,166.71,142.336,119.824,99.1963,

80.4724,63.6704,48.8067,35.8956,24.9496,15.9794,8.99347,3.99871,0.999919 }.

This time the lowest five eigenvalues are 0.9999, 3.9987, 8.9934, 15.9794, 24.9496.

(d) Always, \psi_{0}=\psi_{N+1}=0 ;might as well set λ=1 for the last part.

N = 1 : 2 \psi_{1}=\tilde{E} \psi_{1}, \tilde{E}_{1}=2 Up to normalization:

N=2:\left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right)\left(\begin{array}{l} \psi_{1} \\ \psi_{2} \end{array}\right)=\tilde{E}\left(\begin{array}{l} \psi_{1} \\ \psi_{2} \end{array}\right) \Rightarrow 2 \psi_{1}-\psi_{2}=\tilde{E} \psi_{1} \text { and }-\psi_{1}+2 \psi_{2}=\tilde{E} \psi_{2} .

n=1: \tilde{E}_{1}=1 \Rightarrow 2 \psi_{1}-\psi_{2}=\psi_{1} \Rightarrow \psi_{2}=\psi_{1} .

n=2: \tilde{E}_{2}=3 \Rightarrow 2 \psi_{1}-\psi_{2}=3 \psi_{1} \Rightarrow \psi_{2}=-\psi_{1} .

N=3:\left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right)\left(\begin{array}{l} \psi_{1} \\ \psi_{2} \\ \psi_{3} \end{array}\right)=\tilde{E}\left(\begin{array}{l} \psi_{1} \\ \psi_{2} \\ \psi_{3} \end{array}\right) \Rightarrow 2 \psi_{1}-\psi_{2}=\tilde{E} \psi_{1},-\psi_{1}+2 \psi_{2}-\psi_{3}=\tilde{E} \psi_{2},-\psi_{2}+2 \psi_{3}=\tilde{E} \psi_{3} .

n=1: \tilde{E}_{1}=2-\sqrt{2} \Rightarrow 2 \psi_{1}-\psi_{2}=(2-\sqrt{2}) \psi_{1} \Rightarrow \psi_{2}=\sqrt{2} \psi_{1} ;

-\psi_{1}+2 \psi_{2}-\psi_{3}=(2-\sqrt{2}) \psi_{2} \Rightarrow \psi_{1}+\psi_{3}=\sqrt{2} \psi_{2}=2 \psi_{1} \Rightarrow \psi_{3}=\psi_{1} .

n=2: \tilde{E}_{2}=2 \Rightarrow 2 \psi_{1}-\psi_{2}=2 \psi_{1} \Rightarrow \psi_{2}=0 ;-\psi_{1}+2 \psi_{2}-\psi_{3}=2 \psi_{2} \Rightarrow \psi_{3}=-\psi_{1} .

n=3: \tilde{E}_{3}=2+\sqrt{2} \Rightarrow 2 \psi_{1}-\psi_{2}=(2+\sqrt{2}) \psi_{1} \Rightarrow \psi_{2}=-\sqrt{2} \psi_{1} ;

-\psi_{1}+2 \psi_{2}-\psi_{3}=(2+\sqrt{2}) \psi_{2} \Rightarrow \psi_{1}+\psi_{3}=-\sqrt{2} \psi_{2}=2 \psi_{1} \Rightarrow \psi_{3}=\psi_{1} .

For N = 10 we get

EVE = Eigenvectors [N[p]]

ListLinePlot [EVE[[10]], PlotRange → \left\{0,0.5\right\} ].

ListLinePlot [EVE[[9]], PlotRange → \left\{-0.5,0.5\right\} ].

ListLinePlot [EVE[[8]], PlotRange → \left\{-0.5,0.5\right\} ].

and for N = 100

EVE = Eigenvectors [N[p]]

ListLinePlot [EVE[[100]], PlotRange → \left\{0,0.2\right\} ].

ListLinePlot [EVE[[99]], PlotRange → \left\{-0.2,0.2\right\} ].

ListLinePlot [EVE[[98]], PlotRange → \left\{-0.2,0.2\right\} ].

61
62
63
64
65
66
67
68
69

Related Answered Questions