Question 17.11: (O'Neill and Reese, 1999) Refer to Fig. Ex. 17.11. Determine...

(O’Neill and Reese, 1999)

Refer to Fig. Ex. 17.11. Determine for a free-head pier (a) the groundline deflection, and (b) the maximum bending moment. Use the Duncan et al., (1994) method. Assume R_{I}=1 in the Eqs (17.44) and (17.45).

P_{c}=1.57 d^{2}\left(E R_{I}\right) \frac{\gamma^{\prime} d \phi^{\prime} K_{p}}{E R_{I}}^{0.57} (17.44)

M_{c}=1.33 d^{3}\left(E R_{I}\right) \frac{\gamma^{\prime} d \phi^{\prime} K_{p}}{E R_{I}}^{0.40} (17.45)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substituting in Eqs (17.42) and (17.43)

 

P_{c}=7.34 d^{2}\left(E R_{I}\right) \frac{c_{u}}{E R_{I}}^{0.68} (17.42)

 

M_{c}=3.86 d^{3}\left(E R_{I}\right) \frac{c_{u}}{E R_{I}}^{0.46} (17.43)

 

P_{c}=7.34 \times(0.80)^{2}\left[25 \times 10^{3} \times(1)\right] \frac{0.06}{25 \times 10^{3}}^{0.68}=17.72 MN

 

M_{c}=3.86(0.80)^{3}\left[25 \times 10^{3} \times(1)\right] \frac{0.06}{25 \times 10^{3}}^{0.46}=128.5 MN – m

 

Now \frac{P_{t}}{P_{c}}=\frac{0.080}{17.72}=0.0045, \frac{M_{t}}{M_{c}}=\frac{0.4}{128.5}=0.0031

 

Step1

 

From Fig. 17.23a for \frac{P_{t}}{P_{c}}=0.0045

 

\frac{y_{p}}{d}=0.003 \text { or } y_{p}=0.003 \times 0.8 \times 10^{3}=2.4 mm

 

From Fig. 17.24a, M_{t} / M_{c}=0.0031

 

\frac{y_{m}}{d}=0.006 \text { or } y_{m}=0.006 d=0.006 \times 0.8 \times 10^{3}=4.8 mm

 

Step 2

 

From Fig. 17.23(a) for y_{m} / d=0.006, P_{m} / P_{c}=0.0055

 

From Fig. 17.24(a), for y_{p} / d=0.003, M_{p} / M_{c}=0.0015.

 

Step 3

 

The shear loads P_{t} \text { and } P_{m} applied at ground level, may be expressed as

 

\frac{P_{t}}{P_{c}}+\frac{P_{m}}{P_{c}}=0.0045+0.0055=0.01

 

From Fig. 17.23,

 

\frac{y_{t p}}{d}=0.013 \text { for } \frac{P_{t}+P_{m}}{P_{c}}=0.01

 

or y_{t p}=0.013 \times(0.80) \times 10^{3}=10.4 mm

 

Step 4

 

In the same way as in Step 3

 

\frac{M_{t}}{M_{c}}+\frac{M_{p}}{M_{c}}=0.0031+0.0015=0.0046

 

From Fig. 17.24a \frac{y_{t m}}{d}=\frac{y_{m}+y_{p m}}{d}=0.011

 

Hence y_{t m}=0.011 \times 0.8 \times 10^{3}=8.8 mm

 

Step 5

 

From Eq. (17.50)

 

y_{t}=\frac{y_{t p}+y_{t m}}{2}=\frac{\left(y_{p}+y_{m p}\right)+\left(y_{m}+y_{p m}\right)}{2} (17.50)

 

y_{t}=\frac{y_{t p}+y_{t m}}{2}=\frac{10.4+8.8}{2}=9.6 mm

 

Step 6

 

The maximum moment for the combined shear load and moment at the pier head may be calculated in the same way as explained in Chapter 16. M_{(\max )} as obtained is

 

M_{\max }=470.5 kN – m

 

This occurs at a depth of 1.3 m below ground level.

17.11.
17.11..

Related Answered Questions