Prediction of the Solubility of a Gas in a Liquid Using an EOS
Predict the solubility of carbon dioxide in toluene at 25°C and 1.013 bar carbon dioxide partial pressure using the Peng-Robinson equation of state.
Prediction of the Solubility of a Gas in a Liquid Using an EOS
Predict the solubility of carbon dioxide in toluene at 25°C and 1.013 bar carbon dioxide partial pressure using the Peng-Robinson equation of state.
The critical properties for both carbon dioxide and toluene are given in Table 6.6-1. The binary interaction parameter for the CO _{2}-toluene mixture is not given in Table 9.4-1. However, as the value for CO _{2}-benzene is 0.077 and that for CO _{2}–n-heptane is 0.10, we estimate that the CO _{2}-toluene interaction parameter will be 0.09. Using this value and the bubble point pressure calculation in either the programs or the MATHCAD worksheet for the Peng-Robinson equation of state for mixtures (described in Appendix B and on the website this book), the following values were obtained:
x _{ CO _{2}} | P_{\text {tot }}(\text { bar }) | y_{ CO _{2}} | P_{ CO _{2}}(\text { bar })=y_{ CO _{2}} P_{\text {tot }} |
0.001 | 0.11 | 0.6579 | 0.072 |
0.002 | 0.20 | 0.7915 | 0.158 |
0.004 | 0.36 | 0.8834 | 0.318 |
0.006 | 0.51 | 0.9189 | 0.469 |
0.008 | 0.67 | 0.9378 | 0.628 |
0.010 | 0.83 | 0.9495 | 0.788 |
0.0125 | 1.03 | 0.9590 | 0.988 |
0.013 | 1.07 | 0.9605 | 1.028 |
0.015 | 1.23 | 0.9655 | 1.188 |
Therefore, using the Peng-Robinson equation of state, we estimate that at a partial pressure of 1.013 bar, carbon dioxide will be soluble in liquid toluene to the extent of 0.0128 mole fraction. This value differs from the value of 0.0077 computed in the last illustration using the Prausnitz- Shair correlation and regular solution theory. However, given the inaccuracy of both methods, this difference is not unreasonable.
Comment
Had we assumed that the CO _{2}-toluene binary interaction parameter was zero, the predicted CO _{2} solubility in toluene at 1.013 bar CO _{2} partial pressure would be 0.0221 mole fraction (Problem 11.1-6).
In order to compare the results with those of the previous illustration, we can also compute the solubility of carbon dioxide in carbon disulfide. There is no binary interaction parameter reported for the CO _{2}- CS _{2} mixture, or for any similar mixtures. If we assume the binary interaction parameter is zero, we find that the CO _{2} \text { solubility in } CS _{2} \text { at } 1.013 \text { bar } CO _{2} partial pressure is 0.0159 mole fraction, which is greater than the measured value by a factor of 5 (Problem 11.1-7). However, if we set k_{ CO _{2}- CS _{2}}=0.2 \text {, we obtain a } CO _{2} \text { solubility of } 3.4 \times 10^{-3}, which is in excellent agreement with experiment.
Table 6.6-1 The Critical and Other Constants for Selected Fluids | ||||||||
Substance | Symbol | Molecular Weight \left( g mol ^{-1}\right) | T_{c}( K ) | P_{c}( MPa ) | V_{c}\left( m ^{3} / kmol \right) | Z_{c} | ω | T_{\text {boil }}( K ) |
Acetylene | C _{2} H _{2} | 26.038 | 308.3 | 6.14 | 0.113 | 0.271 | 0.184 | 189.2 |
Ammonia | NH _{3} | 17.031 | 405.6 | 11.28 | 0.0724 | 0.242 | 0.25 | 239.7 |
Argon | Ar | 39.948 | 150.8 | 4.874 | 0.0749 | 0.291 | -0.004 | 87.3 |
Benzene | C _{6} H _{6} | 78.114 | 562.1 | 4.894 | 0.259 | 0.271 | 0.212 | 353.3 |
n-Butane | C _{4} H _{10} | 58.124 | 425.2 | 3.8 | 0.255 | 0.274 | 0.193 | 272.7 |
Isobutane | C _{4} H _{10} | 58.124 | 408.1 | 3.648 | 0.263 | 0.283 | 0.176 | 261.3 |
1-Butene | C _{4} H _{8} | 56.108 | 419.6 | 4.023 | 0.24 | 0.277 | 0.187 | 266.9 |
Carbon dioxide | CO _{2} | 44.01 | 304.2 | 7.376 | 0.094 | 0.274 | 0.225 | 194.7 |
Carbon monoxide | CO | 28.01 | 132.9 | 3.496 | 0.0931 | 0.295 | 0.049 | 81.7 |
Carbon tetrachloride | CCl _{4} | 153.823 | 556.4 | 4.56 | 0.276 | 0.272 | 0.194 | 349.7 |
n-Decane | C _{10} H _{22} | 142.286 | 617.6 | 2.108 | 0.603 | 0.247 | 0.49 | 447.3 |
n-Dodecane | C _{12} H _{26} | 170.34 | 658.3 | 1.824 | 0.713 | 0.24 | 0.562 | 489.5 |
Ethane | C _{2} H _{6} | 30.07 | 305.4 | 4.884 | 0.148 | 0.285 | 0.098 | 184.5 |
Ethyl ether | C _{4} H _{10} O | 74.123 | 466.7 | 3.638 | 0.28 | 0.262 | 0.281 | 307.7 |
Ethylene | C _{2} H _{4} | 28.054 | 282.4 | 5.036 | 0.129 | 0.276 | 0.085 | 169.4 |
Helium | He | 4.003 | 5.19 | 0.227 | 0.0573 | 0.301 | -0.387 | 4.21 |
n-Heptane | C _{7} H _{16} | 100.205 | 540.2 | 2.736 | 0.304 | 0.263 | 0.351 | 371.6 |
n-Hexane | C _{6} H _{14} | 86.178 | 507.4 | 2.969 | 0.37 | 0.26 | 0.296 | 341.9 |
Hydrogen | H _{2} | 2.016 | 33.2 | 1.297 | 0.065 | 0.305 | -0.22 | 20.4 |
Hydrogen fluoride | HF | 20.006 | 461 | 6.488 | 0.069 | 0.12 | 0.372 | 292.7 |
Hydrogen sulfide | H _{2} S | 34.08 | 373.2 | 8.942 | 0.0985 | 0.284 | 0.1 | 212.8 |
Methane | CH _{4} | 16.043 | 190.6 | 4.6 | 0.099 | 0.288 | 0.008 | 111.7 |
Naphthalene | C _{10} H _{8} | 128.174 | 748.4 | 4.05 | 0.41 | 0.267 | 0.302 | 491.1 |
Neon | Ne | 20.183 | 44.4 | 2.756 | 0.0417 | 0.311 | 0 | 27 |
Nitric oxide | NO | 30.006 | 180 | 6.485 | 0.058 | 0.25 | 0.607 | 121.4 |
Nitrogen | N _{2} | 28.013 | 126.2 | 3.394 | 0.0895 | 0.29 | 0.04 | 77.4 |
n-Octane | C _{8} H _{18} | 114.232 | 568.8 | 2.482 | 0.492 | 0.259 | 0.394 | 398.8 |
Oxygen | O _{2} | 31.999 | 154.6 | 5.046 | 0.0732 | 0.288 | 0.021 | 90.2 |
n-Pentane | C _{5} H _{12} | 72.151 | 469.6 | 3.374 | 0.304 | 0.262 | 0.251 | 309.2 |
Isopentane | C _{5} H _{12} | 72.151 | 460.4 | 3.384 | 0.306 | 0.271 | 0.227 | 301 |
Propane | C _{3} H _{8} | 44.097 | 369.8 | 4.246 | 0.203 | 0.281 | 0.152 | 231.1 |
Propylene | C _{3} H _{6} | 42.081 | 365 | 4.62 | 0.181 | 0.275 | 0.148 | 225.4 |
Refrigerant R12 | CCl _{2} F _{2} | 120.914 | 385 | 4.124 | 0.217 | 0.28 | 0.176 | 243.4 |
Refrigerant HFC-134a | CH _{2} FCF _{3} | 102.03 | 374.23 | 4.06 | 0.198 | 0.258 | 0.332 | 247.1 |
Sulfur dioxide | SO _{2} | 64.063 | 430.8 | 7.883 | 0.122 | 0.268 | 0.251 | 263 |
Toluene | C _{7} H _{8} | 92.141 | 591.7 | 4.113 | 0.316 | 0.264 | 0.257 | 383.8 |
Water | H _{2} O | 18.015 | 647.3 | 22.048 | 0.056 | 0.229 | 0.344 | 373.2 |
Xenon | Xe | 131.3 | 289.7 | 5.836 | 0.118 | 0.286 | 0.002 | 165 |
Source: Adapted from R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed.,McGraw-Hill, New York, 1986, Appendix A and other sources. |
Table 9.4-1 Binary Interaction Parameters k_{12} for the Peng-Robinson Equation of State* | |||||||||||||||||||
C _{2} H _{4} | C _{2} H _{6} | C _{3} H _{6} | C _{3} H _{8} | i- C _{4} H _{10} | n- C _{4} H _{10} | i- C _{5} H _{12} | n- C _{6} H _{14} | C _{6} H _{6} | c- C _{6} H _{12} | n- C _{7} H _{16} | n- C _{8} H _{18} | n- C _{10} H _{22} | N _{2} | CO | CO _{2} | SO _{2} | H _{2} S | ||
CH _{4} | 0.022 | -0.003 | 0.033 | 0.016 | 0.026 | 0.019 | 0.026 | 0.04 | 0.055 | 0.039 | 0.035 | 0.05 | 0.049 | 0.03 | 0.03 | 0.09 | 0.136 | 0.08 | |
C _{2} H _{4} | 0.01 | 0.092 | 0.031 | 0.014 | 0.025 | 0.086 | -0.022 | 0.056 | |||||||||||
C _{2} H _{6} | 0.089 | 0.001 | -0.007 | 0.01 | 0.008 | -0.04 | 0.042 | 0.018 | 0.007 | 0.019 | 0.014 | 0.044 | 0.026 | 0.13 | 0.086 | ||||
C _{3} H _{6} | 0.007 | -0.014 | 0.09 | 0.026 | 0.093 | 0.08 | |||||||||||||
C _{3} H _{8} | -0.007 | 0.003 | 0.027 | 0.001 | 0.023 | 0.006 | 0 | 0 | 0.078 | 0.03 | 0.12 | 0.08 | |||||||
i- C _{4} H _{10} | 0 | 0.1 | 0.04 | 0.13 | 0.047 | ||||||||||||||
n- C _{4} H _{10} | 0.017 | -0.006 | 0.003 | 0.007 | 0.008 | 0.087 | 0.04 | 0.135 | 0.07 | ||||||||||
i- C _{5} H _{12} | 0.06 | 0.018 | 0.004 | 0.092 | 0.04 | 0.121 | 0.06 | ||||||||||||
n- C _{5} H _{12} | 0.01 | -0.004 | 0.007 | 0 | 0.1 | 0.04 | 0.125 | 0.063 | |||||||||||
n- C _{6} H _{14} | 0.013 | -0.008 | 0.15 | 0.04 | 0.11 | 0.06 | |||||||||||||
C _{6} H _{6} | 0.001 | 0.003 | 0.1 | 0.164 | 0.11 | 0.077 | 0.015 | ||||||||||||
c- C _{6} H _{12} | 0.14 | 0.1 | 0.105 | ||||||||||||||||
n- C _{7} H _{16} | 0 | 0.1 | 0.04 | 0.1 | 0.06 | ||||||||||||||
n- C _{8} H _{18} | 0.1 | 0.04 | 0.12 | 0.06 | |||||||||||||||
n- C _{10} H _{22} | 0.11 | 0.04 | 0.114 | 0.033 | |||||||||||||||
N _{2} | 0.012 | -0.02 | 0.08 | 0.17 | |||||||||||||||
CO | 0.03 | 0.054 | |||||||||||||||||
CO _{2} | 0.136 | 0.097 | |||||||||||||||||
SO _{2} | |||||||||||||||||||
H _{2} S | |||||||||||||||||||
*Obtained from data in “Vapor-Liquid Equilibria for Mixtures of Low-Boiling Substances,” by H. Knapp, R. D¨oring, L. Oellrich, U. Pl¨ocker, and J. M. Prausnitz, DECHEMA Chemistry Data Series, Vol. VI, Frankfurt/Main, 1982, and other sources. Blanks indicate no data are available from which the k12 could be evaluated. In such case use estimates from mixtures of similar compounds. |