Prepare Bode diagram curves for the second-order system described by
\frac{d^2y}{dt^{2} } +2\xi \omega _{n}\frac{dy}{dt} +\omega ^{2}_{n}y= \omega ^{2}_{n}x . (12.47)
Prepare Bode diagram curves for the second-order system described by
\frac{d^2y}{dt^{2} } +2\xi \omega _{n}\frac{dy}{dt} +\omega ^{2}_{n}y= \omega ^{2}_{n}x . (12.47)
Step 1. The system transfer function is
T(s)=\frac{Y(s)}{X(s)} =\frac{\omega ^{2}_{n}}{x^{2}+2\xi \omega _{n}s+\omega ^{2}_{n} } . (12.48)
Step 2. The sinusoidal transfer function is
T(j\omega ) =\frac{\omega ^{2}_{n}}{(j\omega )^{2}+2\xi \omega _{n}j\omega +\omega ^{2}_{n} }=\frac{1}{1-({\omega }/{\omega _{n} })^{2}+j2\xi ({\omega }/{\omega _{n} }) } . (12.49)
Step 3. Develop expressions for T(ω) and \phi_{T} (ω). First, the magnitude is
T(j\omega ) =\frac{1}{\sqrt{\left[1-({\omega }/{\omega _{n} })^{2}\right] ^{2}+4\xi ^{2}({\omega }/{\omega _{n} })^{2}}} . (12.50)
Then the phase angle is
\phi _{T} (\omega ) =-\tan ^{-1} \frac{2\xi({\omega }/{\omega _{n} }) }{1-({\omega }/{\omega _{n} })^{2} } . (12.51)
Step 4. Prepare the Bode diagram curves, as shown in Fig. 12.6.