Question 2.4: Pressure gage B is to measure the pressure at point A in a w...

Pressure gage B is to measure the pressure at point A in a water flow. If the pressure at B is 87 kPa, estimate the pressure at A in kPa. Assume all fluids are at 20°C. See Fig. E2.4.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• System sketch: The system is shown in Fig. E2.4.
• Assumptions: Hydrostatic fluids, no mixing, vertical “up” in Fig. E2.4.
• Approach: Sequential use of Eq. (2.14) to go from A to B.
Liquids:            p_2 – p_1 = -\gamma(z_2 – z_1)

or               z_1 – z_2 = \frac{p_2}{\gamma} – \frac{p_1}{\gamma}                         (2.14)

• Property values: From Table 2.1 or Table A.3:

\gamma_{water} = 9790  N/m^3;  \gamma_{mercury} = 133,100  N/m^3;  \gamma_{oil} = 8720  N/m^3
Table 2.1 Specific Weight of Some Common Fluids
Specific weight \gamma
at 68°F = 20°C
Fluid lbf/ft^3 N/m^3
Air (at 1 atm) 0.0752 11.8
Ethyl alcohol 49.2 7,733
SAE 30 oil 55.5 8,720
Water 62.4 9,790
Seawater 64.0 10,050
Glycerin 78.7 12,360
Carbon tetrachloride 99.1 15,570
Mercury 846 133,100
Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F)
Liquid ρ, kg/m^3 µ, kg/(m·s) Y, N/m^* p_{\nu},  N/m^2 Bulk modulus K,
N/m^2
Viscosity
parameter C^\dagger
Ammonia 608 2.20 E-4 2.13 E-2 9.10 E+5 1.82 E+9 1.05
Benzene 881 6.51 E-4 2.88 E-2 1.01 E+4 1.47 E+9 4.34
Carbon tetrachloride 1590 9.67 E-4 2.70 E-2 1.20 E+4 1.32 E+9 4.45
Ethanol 789 1.20 E-3 2.28 E-2 5.73 E+3 1.09 E+9 5.72
Ethylene glycol 1117 2.14 E-2 4.84 E-2 1.23 E+1 3.05 E+9 11.7
Freon 12 1327 2.62 E-4 7.95 E+8 1.76
Gasoline 680 2.92 E-4 2.16 E-2 5.51 E+4 1.3 E+9 3.68
Glycerin 1260 1.49 6.33 E-2 1.43 E-2 4.35 E+9 28.0
Kerosene 804 1.92 E-3 2.8 E-2 3.11 E+3 1.41 E+9 5.56
Mercury 13,550 1.56 E-3 4.84 E-1 1.13 E-3 2.85 E+10 1.07
Methanol 791 5.98 E-4 2.25 E-2 1.34 E+4 1.03 E+9 4.63
SAE 10W oil 870 1.04 E-1^\ddagger 3.6 E-2 1.31 E+9 15.7
SAE 10W30 oil 876 1.7 E-1^\ddagger 14.0
SAE 30W oil 891 2.9 E-1^\ddagger 3.5 E-2 1.38 E+9 18.3
SAE 50W oil 902 8.6 E-1^\ddagger 20.2
Water 998 1.00 E-3 7.28 E-2 2.34 E+3 2.19 E+9 Table A.1
Seawater (30%) 1025 1.07 E-3 7.28 E-2 2.34 E+3 2.33 E+9 7.28

^*In contact with air.
^†The viscosity–temperature variation of these liquids may be fitted to the empirical expression

\frac{\mu}{\mu_{20^{\circ}C}} \approx \exp \left[C\left(\frac{293  K}{T  K} – 1\right)\right]

with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.

^‡Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.

Table A.1 Viscosity and Density of Water at 1 atm
T, °C ρ, kg/m^3 µ, N·s/m^2 \nu,  m^2/s T, °F ρ, slug/ft^3 µ, Ib·s/ft^2 \nu,  ft^2/s
0 1000 1.788 E-3 1.788 E-6 32 1.940 3.73 E-5 1.925 E-5
10 1000 1.307 E-3 1.307 E-6 50 1.940 2.73 E-5 1.407 E-5
20 998 1.003 E-3 1.005 E-6 68 1.937 2.09 E-5 1.082 E-5
30 996 0.799 E-3 0.802 E-6 86 1.932 1.67 E-5 0.864 E-5
40 992 0.657 E-3 0.662 E-6 104 1.925 1.37 E-5 0.713 E-5
50 988 0.548 E-3 0.555 E-6 122 1.917 1.14 E-5 0.597 E-5
60 983 0.467 E-3 0.475 E-6 140 1.908 0.975 E-5 0.511 E-5
70 978 0.405 E-3 0.414 E-6 158 1.897 0.846 E-5 0.446 E-5
80 972 0.355 E-3 0.365 E-6 176 1.886 0.741 E-5 0.393 E-5
90 965 0.316 E-3 0.327 E-6 194 1.873 0.660 E-5 0.352 E-5
100 958 0.283 E-3 0.295 E-6 212 1.859 0.591 E-5 0.318 E-5

• Solution steps: Proceed from A to B, “down” then “up,” jumping across at the left mercury meniscus:
p_A + \gamma_w |\Delta z|_w – \gamma_m |\Delta z_m| – \gamma_o |\Delta z|_o = p_B

or  p_A + (9790  N/m^3)(0.05  m) – (133,100  N/m^3)(0.07  m) – (8720  N/m^3)(0.06  m) = 87,000

or    p_A + 490 – 9317 – 523 = 87,000 Solve for p_A = 96,350  N/m^2 \approx 96.4  kPa

• Comments: Note that we abbreviated the units N/m^2 to pascals, or Pa. The intermediate five-figure result, p_A = 96,350  Pa, is unrealistic, since the data are known to only about three significant figures.

Related Answered Questions