Pressure gage B is to measure the pressure at point A in a water flow. If the pressure at B is 87 kPa, estimate the pressure at A in kPa. Assume all fluids are at 20°C. See Fig. E2.4.
Pressure gage B is to measure the pressure at point A in a water flow. If the pressure at B is 87 kPa, estimate the pressure at A in kPa. Assume all fluids are at 20°C. See Fig. E2.4.
• System sketch: The system is shown in Fig. E2.4.
• Assumptions: Hydrostatic fluids, no mixing, vertical “up” in Fig. E2.4.
• Approach: Sequential use of Eq. (2.14) to go from A to B.
Liquids: p_2 – p_1 = -\gamma(z_2 – z_1)
or z_1 – z_2 = \frac{p_2}{\gamma} – \frac{p_1}{\gamma} (2.14)
• Property values: From Table 2.1 or Table A.3:
\gamma_{water} = 9790 N/m^3; \gamma_{mercury} = 133,100 N/m^3; \gamma_{oil} = 8720 N/m^3Table 2.1 Specific Weight of Some Common Fluids | ||
Specific weight \gamma at 68°F = 20°C |
||
Fluid | lbf/ft^3 | N/m^3 |
Air (at 1 atm) | 0.0752 | 11.8 |
Ethyl alcohol | 49.2 | 7,733 |
SAE 30 oil | 55.5 | 8,720 |
Water | 62.4 | 9,790 |
Seawater | 64.0 | 10,050 |
Glycerin | 78.7 | 12,360 |
Carbon tetrachloride | 99.1 | 15,570 |
Mercury | 846 | 133,100 |
Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F) | ||||||
Liquid | ρ, kg/m^3 | µ, kg/(m·s) | Y, N/m^* | p_{\nu}, N/m^2 | Bulk modulus K, N/m^2 |
Viscosity parameter C^\dagger |
Ammonia | 608 | 2.20 E-4 | 2.13 E-2 | 9.10 E+5 | 1.82 E+9 | 1.05 |
Benzene | 881 | 6.51 E-4 | 2.88 E-2 | 1.01 E+4 | 1.47 E+9 | 4.34 |
Carbon tetrachloride | 1590 | 9.67 E-4 | 2.70 E-2 | 1.20 E+4 | 1.32 E+9 | 4.45 |
Ethanol | 789 | 1.20 E-3 | 2.28 E-2 | 5.73 E+3 | 1.09 E+9 | 5.72 |
Ethylene glycol | 1117 | 2.14 E-2 | 4.84 E-2 | 1.23 E+1 | 3.05 E+9 | 11.7 |
Freon 12 | 1327 | 2.62 E-4 | – | – | 7.95 E+8 | 1.76 |
Gasoline | 680 | 2.92 E-4 | 2.16 E-2 | 5.51 E+4 | 1.3 E+9 | 3.68 |
Glycerin | 1260 | 1.49 | 6.33 E-2 | 1.43 E-2 | 4.35 E+9 | 28.0 |
Kerosene | 804 | 1.92 E-3 | 2.8 E-2 | 3.11 E+3 | 1.41 E+9 | 5.56 |
Mercury | 13,550 | 1.56 E-3 | 4.84 E-1 | 1.13 E-3 | 2.85 E+10 | 1.07 |
Methanol | 791 | 5.98 E-4 | 2.25 E-2 | 1.34 E+4 | 1.03 E+9 | 4.63 |
SAE 10W oil | 870 | 1.04 E-1^\ddagger | 3.6 E-2 | – | 1.31 E+9 | 15.7 |
SAE 10W30 oil | 876 | 1.7 E-1^\ddagger | – | – | – | 14.0 |
SAE 30W oil | 891 | 2.9 E-1^\ddagger | 3.5 E-2 | – | 1.38 E+9 | 18.3 |
SAE 50W oil | 902 | 8.6 E-1^\ddagger | – | – | – | 20.2 |
Water | 998 | 1.00 E-3 | 7.28 E-2 | 2.34 E+3 | 2.19 E+9 | Table A.1 |
Seawater (30%) | 1025 | 1.07 E-3 | 7.28 E-2 | 2.34 E+3 | 2.33 E+9 | 7.28 |
^*In contact with air.
^†The viscosity–temperature variation of these liquids may be fitted to the empirical expression
with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.
^‡Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.
Table A.1 Viscosity and Density of Water at 1 atm | |||||||
T, °C | ρ, kg/m^3 | µ, N·s/m^2 | \nu, m^2/s | T, °F | ρ, slug/ft^3 | µ, Ib·s/ft^2 | \nu, ft^2/s |
0 | 1000 | 1.788 E-3 | 1.788 E-6 | 32 | 1.940 | 3.73 E-5 | 1.925 E-5 |
10 | 1000 | 1.307 E-3 | 1.307 E-6 | 50 | 1.940 | 2.73 E-5 | 1.407 E-5 |
20 | 998 | 1.003 E-3 | 1.005 E-6 | 68 | 1.937 | 2.09 E-5 | 1.082 E-5 |
30 | 996 | 0.799 E-3 | 0.802 E-6 | 86 | 1.932 | 1.67 E-5 | 0.864 E-5 |
40 | 992 | 0.657 E-3 | 0.662 E-6 | 104 | 1.925 | 1.37 E-5 | 0.713 E-5 |
50 | 988 | 0.548 E-3 | 0.555 E-6 | 122 | 1.917 | 1.14 E-5 | 0.597 E-5 |
60 | 983 | 0.467 E-3 | 0.475 E-6 | 140 | 1.908 | 0.975 E-5 | 0.511 E-5 |
70 | 978 | 0.405 E-3 | 0.414 E-6 | 158 | 1.897 | 0.846 E-5 | 0.446 E-5 |
80 | 972 | 0.355 E-3 | 0.365 E-6 | 176 | 1.886 | 0.741 E-5 | 0.393 E-5 |
90 | 965 | 0.316 E-3 | 0.327 E-6 | 194 | 1.873 | 0.660 E-5 | 0.352 E-5 |
100 | 958 | 0.283 E-3 | 0.295 E-6 | 212 | 1.859 | 0.591 E-5 | 0.318 E-5 |
• Solution steps: Proceed from A to B, “down” then “up,” jumping across at the left mercury meniscus:
p_A + \gamma_w |\Delta z|_w – \gamma_m |\Delta z_m| – \gamma_o |\Delta z|_o = p_B
or p_A + (9790 N/m^3)(0.05 m) – (133,100 N/m^3)(0.07 m) – (8720 N/m^3)(0.06 m) = 87,000
or p_A + 490 – 9317 – 523 = 87,000 Solve for p_A = 96,350 N/m^2 \approx 96.4 kPa
• Comments: Note that we abbreviated the units N/m^2 to pascals, or Pa. The intermediate five-figure result, p_A = 96,350 Pa, is unrealistic, since the data are known to only about three significant figures.