(a) Consider the two quarks to move circularly, much like the electron and proton in a hydrogen atom; then we can write the force between them as
\mu \frac{\upsilon ^2}{r}=\frac{dV(r)}{dr}=k, (1.240 )
where \mu =m/2 is the reduced mass and V(r) is the potential. From the Bohr quantization condition of the orbital angular momentum, we have
L=\mu \upsilon r=n\hbar . (1.241)
Multiplying (1.240) by (1.241), we end up with \mu ^2\upsilon ^3=n\hbar k, which yields the (quantized) speed of the relative motion for the two-quark system:
\upsilon _n=\left(\frac{\hbar k}{\mu ^2} \right) ^{1/3}n^{1/3}. (1.242)
The radius can be obtained from (1.241), r_n=n\hbar /(\mu \upsilon _n); using (1.242), this leads to
r _n=\left(\frac{\hbar ^2}{\mu k} \right) ^{1/3}n^{2/3}. (1.243)
We can obtain the total energy of the relative motion by adding the kinetic and potential energies:
E _n=\frac{1}{2}\mu \upsilon ^2_n+kr_n=\frac{3}{2} \left(\frac{\hbar ^2k^2}{\mu } \right) ^{1/3}n^{2/3}. (1.244)
In deriving this relation, we have used the relations for \upsilon_n and r_n as given by (1.242) by (1.243), respectively.
The angular frequency of the radiation generated by a transition from n to m is given by
\omega _{nm}=\frac{E_n-E_m}{\hbar}=\frac{3}{2} \left(\frac{k^2}{\mu \hbar} \right) ^{1/3} \left(n^{2/3}-m^{2/3}\right). (1.245)
(b) Inserting n = 1, \hbar c\simeq 0.197 GeV fm, \mu c^2=mc^2/2=1 GeV, and k=0.5 GeV fm^{-1}
into (1.242) to (1.244), we have
\upsilon _1=\left(\frac{\hbar ck}{(\mu c^2)^2} \right)^{1/3}c\simeq \left(\frac{0.197 GeV fm \times 0.5 GeV fm^{-1}}{(1 GeV)^2} \right)^{1/3} c=0.46c, (1.246)
where c is the speed of light and
r _1=\left(\frac{(\hbar c)^2}{\mu c^2k} \right)^{1/3}\simeq \left(\frac{(0.197 GeV fm )^2}{1 GeV \times 0.5 GeV fm^{-1}} \right)^{1/3} =0.427 fm, (1.247)
E _1=\frac{3}{2} \left(\frac{(\hbar c)^2k^2}{\mu c^2} \right)^{1/3}\simeq \frac{3}{2} \left(\frac{(0.197 GeV fm )^2(0.5 GeV fm^{-1})^2}{1 GeV } \right)^{1/3} =0.32 GeV.