Question 24.2: PROPERTIES OF A PARALLEL-PLATE CAPACITOR The plates of a par...

PROPERTIES OF A PARALLEL-PLATE CAPACITOR

The plates of a parallel-plate capacitor in vacuum are 5.00 mm apart and 2.00 m^2 in area. A 10.0-kV potential difference is applied across the capacitor. Compute (a) the capacitance; (b) the charge on each plate; and (c) the magnitude of the electric field between the plates.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

IDENTIFY and SET UP:

We are given the plate area A, the plate spacing d, and the potential difference V_{ab} = 1.00 × 10^4 V for this parallel-plate capacitor. Our target variables are the capacitance C, the charge Q on each plate, and the electric-field magnitude E.
We use Eq. (24.2) to calculate C and then use Eq. (24.1) and V_{ab} to find Q. We use E=Q / \epsilon_{0} A to find E.

C=\frac{Q}{V_{a b}}                         (24.1)

C=\frac{Q}{V_{a b}}=\epsilon_{0} \frac{A}{d}                         (24.2)

EXECUTE:

(a) From Eq. (24.2),

\begin{aligned}C &=\epsilon_{0} \frac{A}{d}=\left(8.85 \times 10^{-12} \mathrm{~F} /\mathrm{m}\right) \frac{\left(2.00 \mathrm{~m}^{2}\right)}{5.00 \times 10^{-3}\mathrm{~m}}\\&=3.54 \times 10^{-9} \mathrm{~F}=0.00354 \mu \mathrm{F}\end{aligned}

(b) The charge on the capacitor is

\begin{aligned}Q=C V_{a b} &=\left(3.54 \times 10^{-9} \mathrm{C} / \mathrm{V}\right)\left(1.00 \times 10^{4} \mathrm{~V}\right) \\&=3.54 \times 10^{-5} \mathrm{C}=35.4 \mu\mathrm{C}\end{aligned}

The plate at higher potential has charge +35.4 μC, and the other plate has charge -35.4 μC.

(c) The electric-field magnitude is

\begin{aligned}E &=\frac{\sigma}{\epsilon_{0}}=\frac{Q}{\epsilon_{0} A}=\frac{3.54 \times10^{-5} \mathrm{C}}{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot\mathrm{m}^{2}\right)\left(2.00 \mathrm{~m}^{2}\right)} \\&=2.00 \times 10^{6}\mathrm{~N} / \mathrm{C}\end{aligned}

 

EVALUATE: We can also find E by recalling that the electric field is equal in magnitude to the potential gradient [Eq. (23.22), \vec{E}=-\vec{\nabla} V]. The field between the plates is uniform, so

E=\frac{V_{a b}}{d}=\frac{1.00 \times 10^{4} \mathrm{~V}}{5.00 \times 10^{-3} \mathrm{~m}}=2.00 \times 10^{6} \mathrm{~V} / \mathrm{m}

(Remember that 1 N/C = 1 V/m.)

Related Answered Questions