Question 7.1.2: Proving the Equality of Gibbs Energies for Vapor-Liquid Equi...

Proving the Equality of Gibbs Energies for Vapor-Liquid Equilibrium
Use the information in the steam tables of Appendix A.III to show that Eq. 7.1-9c is satisfied at 100°C and 0.101 35 MPa.

 

\left(\frac{\partial S}{\partial N^{\mathrm{I}}}\right)_{U^\mathrm{I}, V^{\mathrm{I}}}=0 \quad \text { so that } \quad \frac{\underline{G}^{\mathrm{I}}}{T^{\mathrm{I}}}=\frac{\underline{G}^{\mathrm{II}}}{T^{\mathrm{II}}} \quad \text { or } \quad \underline{G}^{\mathrm{I}}=\underline{G}^{\mathrm{II}}                           (7.1.9c)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From the saturated steam temperature table, we have at 100°C and 0.10135 MPa

 

\begin{aligned}\hat{H}^{\mathrm{L}} &=419.04 \mathrm{~kJ} / \mathrm{kg} & \hat{H}^{\mathrm{V}} &=2676.1 \mathrm{~kJ} / \mathrm{kg} \\\\\hat{S}^{\mathrm{L}} &=1.3069 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K}) & \hat{S}^{\mathrm{V}} &=7.3549 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})\end{aligned}

 

Since \hat{G}=\hat{H}-T \hat{S}, we have further that

 

\hat{G}^{\mathrm{L}}=419.04-373.15 \times 1.3069=-68.6 \mathrm{~kJ} / \mathrm{kg}

 

and

 

\hat{G}^{\mathrm{V}}=2676.1-373.15 \times 7.3549=-68.4 \mathrm{~kJ} / \mathrm{kg}

 

which, to the accuracy of the calculations here, confirms that \hat{G}^{\mathrm{L}}=\hat{G}^{\mathrm{V}} (or, equivalently, that \underline{G}^{\mathrm{L}}=\underline{G}^{\mathrm{V}} ) at this vapor-liquid phase equilibrium state.

Related Answered Questions