Question B.12: Pulse response of a parallel RC circuit A constant-current s...

Pulse response of a parallel RC circuit A constant-current source i_{ S }=I_{ S } , shown in Fig. B.29(a), feeds a parallel RC circuit with C = 0.1 µF and R = 100 kΩ, as shown in Fig. B.29(b). The input is a pulse current of duration T = 0.5 ms. Determine (a) the instantaneous current i_{ C }(t) through capacitance C, (b) the instantaneous current i_{ R }(t) through resistance R, and (c) the sag S of the capacitor current.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For a pulse signal, the input current in Laplace’s domain is I_{ S }(s)=I_{ S } / s .
(a) Using the current divider rule, we can find the capacitor current I_{ C } in Laplace’s domain:

I_{ C }(s)=\frac{R}{R+1 / C s} I_{ S }(s)=\frac{s}{s+1 / R C} I_{ S }(s)=\frac{s}{s+1 / R C} \times \frac{I_{ S }}{s}=\frac{I_{ S }}{s+1 / R C}

 

=I_{ S } \frac{I}{s+1 / R C}                                                 (B.43)

The inverse transform of I_{ C }(s) in Eq. (B.43) gives

i_{ C }(t)=I_{ S } e^{-t / \tau}                                                 (B.44)

where τ = RC.

(b) The instantaneous current i_{ R }(t) through resistance R is

i_{ R }(t)=I_{ S }-i_{ C }(t)=I_{ S }\left(1-e^{-t / \tau}\right)                                                   (B.45)

(c) \tau=R C=100 \times 10^{3} \times 0.1 \times 10^{-6}=10 ms \text {, and } T=0.5 ms \text {. Therefore, } \tau>>T , and Eq. (B.42) gives

S=\frac{\Delta V}{V_{ S }}=\frac{V_{ S } T / \tau}{V_{ S }}=\frac{T}{\tau}=\frac{T}{R C}                  (B.42)

 

S=T / \tau=0.5 / 10=5 \%

Related Answered Questions