Question 7.230E: Redo Problem 7.198E if the water pump has an isentropic effi...

Redo Problem 7.198E if the water pump has an isentropic efficiency of 85% (hose, nozzle included).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V.: pump + hose + water column, total height difference 110 ft. Here V is velocity, not volume.

Continuity Eq.4.3, 4.11:          \dot{ m }_{ in }=\dot{ m }_{ ex }=(\rho A V )_{ nozzle }

Energy Eq.4.12:                        \dot{ m }\left(- w _{ p }\right)+\dot{ m }\left( h + V ^{2} / 2+ g z\right)_{ in }=\dot{ m }\left( h + V ^{2} / 2+ g z\right)_{ ex }

Process:

\begin{array}{l}h _{ in } \cong h _{ ex }, \quad V _{ in } \cong V _{ ex }=0, \quad z _{ ex }- z _{ in }=110   ft , \quad \rho=1 / v \cong 1 / v _{ f } \\- w _{ p }= g \left( z _{ ex }- z _{ in }\right)=32.174 \times(110-0) / 25037=0.141   Btu / lbm\end{array}

 

Recall the conversion  1  Btu / lbm =25037   ft ^{2} / s ^{2} from Table A.1. The velocity in the exit nozzle is such that it can rise 30 ft. Make that column a C.V. for which Bernoulli Eq.7.17 is:

 

gz _{ noz }+\frac{1}{2} V _{ noz }^{2}= g z _{ ex }+0

 

\begin{aligned}V _{\text {noz }} &=\sqrt{2 g\left(z_{e x}-z_{n o z}\right)} \\&=\sqrt{2 \times 32.174 \times 30}=43.94   ft / s\end{aligned}

 

Assume:        v = v _{ F , 70 F }=0.01605   ft ^{3} / lbm

\dot{ m }=\frac{\pi}{ v _{ f }}\left(\frac{ D }{2}\right)^{2} V _{ noz }=(\pi / 4)\left(1^{2} / 144\right) \times 43.94 / 0.01605=14.92   lbm / s

 

\dot{ W }_{\text {pump }}=\dot{ m } w _{ p } / \eta=14.92 \times 0.141 \times(3600 / 2544) / 0.85= 3 . 5   h p

 

……………………………

Eq.4.3 : \dot{m}=\rho_{ avg } \dot{V}=\dot{V} / v=\int\left( V _{\text {local }} / v\right) d A= V A / v

Eq.4.11 : \dot{m}_{i}=\dot{m}_{e}=\dot{m}

Eq.4.12 : \dot{Q}_{ C.V .}+\dot{m}\left(h_{i}+\frac{ V _{i}^{2}}{2}+g Z_{i}\right)=\dot{m}\left(h_{e}+\frac{ V _{e}^{2}}{2}+g Z_{e}\right)+\dot{W}_{ C . V. }

Eq.7.17 : v P_{i}+\frac{1}{2} V _{i}^{2}+g Z_{i}=v P_{e}+\frac{1}{2} V _{e}^{2}+g Z_{e}

 

1
A.1.1
A.1.2
A.1.3
A.1.4
A.1.5

Related Answered Questions