Refer to Example 20.7. Determine for the pile (a) the bending moment M_{\max }, and (b) the reduced moment by Rowe’s method.
Refer to Example 20.7. Determine for the pile (a) the bending moment M_{\max }, and (b) the reduced moment by Rowe’s method.
Refer to Fig. Ex. 20.7. The following data are available
H=5 m , h_{1}=2 m , h_{2}=3 m , h_{3}=4 m
\gamma_{d}=13 kN / m ^{3}, \gamma_{b}=8.19 kN / m ^{3} \text { and } \phi=30^{\circ}
The maximum bending moment occurs at a depth h_{m} from ground level where the shear is zero. The equation which gives the value of h_{m} is
\frac{1}{2} \bar{p}_{1} h_{1}-T_{a}+\bar{p}_{1}\left(h_{m}-h_{1}\right)+\frac{1}{2} \gamma_{b} K_{A}\left(h_{m}-h_{1}\right)^{2}=0
where \bar{p}_{1}=8.67 kN / m ^{2}
h_{1}=2 m , T_{a}=28.9 kN / m
Substituting
\frac{1}{2} \times 8.67 \times 2-28.9+8.67\left(h_{m}-2\right)+\frac{1}{2} \times 8.19 \times \frac{1}{3}\left(h_{m}-2\right)^{2}=0
Simplifying, we have
h_{m}^{2}+2.35 h_{m}-23.5=0
or h_{m} \approx 3.81 m
Taking moments about the point of zero shear,
\begin{aligned}M_{\max } &=-\frac{1}{2} \bar{p}_{1} h_{1} h_{m}-\frac{2}{3} h_{1}+T_{a}\left(h_{m}-h_{a}\right)-\bar{p}_{1} \frac{\left(h_{m}-h_{1}\right)^{2}}{2}-\frac{1}{6} \gamma_{b} K_{A}\left(h_{m}-h_{1}\right)^{3} \\&=-\frac{1}{2} \times 8.67 \times 23.81-\frac{2}{3} \times 2+28.9(3.81-1)-8.67 \frac{(3.81-2)^{2}}{2}-\frac{1}{6} 8.19 \times \frac{1}{3}(3.81-2)^{3} \\&=-21.41+81.2-14.2-2.70 \approx 42.8 kN – m / m\end{aligned}
From Ex. 20.7
D (design) = 3.18m, H = 5m
Therefore \bar{H}=8.18 m
From Eq. (20.47a) \rho=109 \times 10^{-6} \frac{\bar{H}^{4}}{E I}
\rho=109 \times 10^{-6} \frac{\bar{H}^{4}}{E I} (20.47a)
Assume E=20.7 \times 10^{4} MN / m ^{2}
For a section P_{z}-27, \quad I=25.2 \times 10^{-5} m ^{4} / m
Substituting \rho=\frac{10.9 \times 10^{-5} \times(8.18)^{4}}{2.07 \times 10^{5} \times 25.2 \times 10^{-5}}=9.356 \times 10^{-3}
\log \rho=\log \frac{9.36}{10^{3}}=-2.0287 \text { or say } 2.00
Assuming the sand backfill is loose, we have from Fig. 20.20 (a)
\frac{M_{d}}{M_{\max }}=0.32 \text { for } \log \rho=-2.00
Therefore M_{d}(\operatorname{design})=0.32 \times 42.8=13.7 kN – m / m