Question 20.11: Refer to Example 20.7. Determine for the pile (a) the bendin...

Refer to Example 20.7. Determine for the pile (a) the bending moment M_{\max }, and (b) the reduced moment by Rowe’s method.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Refer to Fig. Ex. 20.7. The following data are available

 

H=5 m , h_{1}=2 m , h_{2}=3 m , h_{3}=4 m

 

\gamma_{d}=13 kN / m ^{3}, \gamma_{b}=8.19 kN / m ^{3} \text { and } \phi=30^{\circ}

 

The maximum bending moment occurs at a depth h_{m} from ground level where the shear is zero. The equation which gives the value of h_{m} is

 

\frac{1}{2} \bar{p}_{1} h_{1}-T_{a}+\bar{p}_{1}\left(h_{m}-h_{1}\right)+\frac{1}{2} \gamma_{b} K_{A}\left(h_{m}-h_{1}\right)^{2}=0

 

where \bar{p}_{1}=8.67 kN / m ^{2}

 

h_{1}=2 m , T_{a}=28.9 kN / m

 

Substituting

 

\frac{1}{2} \times 8.67 \times 2-28.9+8.67\left(h_{m}-2\right)+\frac{1}{2} \times 8.19 \times \frac{1}{3}\left(h_{m}-2\right)^{2}=0

 

Simplifying, we have

 

h_{m}^{2}+2.35 h_{m}-23.5=0

 

or h_{m} \approx 3.81 m

 

Taking moments about the point of zero shear,

 

\begin{aligned}M_{\max } &=-\frac{1}{2} \bar{p}_{1} h_{1} h_{m}-\frac{2}{3} h_{1}+T_{a}\left(h_{m}-h_{a}\right)-\bar{p}_{1} \frac{\left(h_{m}-h_{1}\right)^{2}}{2}-\frac{1}{6} \gamma_{b} K_{A}\left(h_{m}-h_{1}\right)^{3} \\&=-\frac{1}{2} \times 8.67 \times 23.81-\frac{2}{3} \times 2+28.9(3.81-1)-8.67 \frac{(3.81-2)^{2}}{2}-\frac{1}{6} 8.19 \times \frac{1}{3}(3.81-2)^{3} \\&=-21.41+81.2-14.2-2.70 \approx 42.8 kN – m / m\end{aligned}

 

From Ex. 20.7

 

D (design) = 3.18m, H = 5m

 

Therefore \bar{H}=8.18 m

 

From Eq. (20.47a) \rho=109 \times 10^{-6} \frac{\bar{H}^{4}}{E I}

 

\rho=109 \times 10^{-6} \frac{\bar{H}^{4}}{E I} (20.47a)

 

Assume E=20.7 \times 10^{4} MN / m ^{2}

 

For a section P_{z}-27, \quad I=25.2 \times 10^{-5} m ^{4} / m

 

Substituting \rho=\frac{10.9 \times 10^{-5} \times(8.18)^{4}}{2.07 \times 10^{5} \times 25.2 \times 10^{-5}}=9.356 \times 10^{-3}

 

\log \rho=\log \frac{9.36}{10^{3}}=-2.0287 \text { or say } 2.00

 

Assuming the sand backfill is loose, we have from Fig. 20.20 (a)

 

\frac{M_{d}}{M_{\max }}=0.32 \text { for } \log \rho=-2.00

 

Therefore M_{d}(\operatorname{design})=0.32 \times 42.8=13.7 kN – m / m

20.7
20.11

Related Answered Questions

Refer to Fig. Ex. 20.8 The following equations may...