Question 1.43: Refer to Example Problem 1.39, where for a 69-m^3 helium tan...

Refer to Example Problem 1.39, where for a 69- m^{3} helium tank compressed under a pressure of 800 kN/m^{2} abs and at a temperature of 10^{\circ }C , the density of the helium in the tank was determined to be 1.36 kg/m^{3} , and the weight of the helium in the tank was determined to be 920.804 N. The helium in the tank is further compressed under isentropic (frictionless and no heat exchange with the surroundings) to a volume of 35 m^{3} . (a) Determine the resulting density of the helium in the tank. (b) Determine the resulting pressure of the helium in the tank. (c) Determine the resulting bulk modulus of elasticity of the helium in the tank.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) To determine the resulting density of the helium in the tank, one must note that the mass of the helium in Equation 1.33 \rho =\frac{M}{V} and thus the weight of the helium in Equation 1.44 \gamma =\frac{W}{V}=\frac{Mg}{V}=\rho g remains a constant as follows:

N:=kg\frac{m }{sec^{2}}                P_{1} :=800\frac{kn}{m^{2}}                V_{1} :=69m^{3}

g:=9.81 \frac{m }{sec^{2}}                \rho _{1} :=1.36\frac{kg}{m^{3}}                W_{1} :=920.804 N^{3}

V_{2} :=35 m^{3}                W_{2}=W_{1} :=920.804 N^{3}                \gamma _{2} :=\frac{W_{2}}{V_{2}} =26.309\frac{N}{m^{3}}
\rho _{2} := \frac{\gamma _{2} }{g} =2.682\frac{kg}{m^{3}}

(b) Given compression under isentropic (frictionless and no heat exchange with the surroundings), to determine the resulting pressure of the helium in the tank, one may apply Equation 1.156 \frac{p}{\rho ^{k} } =C as follows:

K:=1.66                            \frac{P_{1}}{(1.36)^{k}\frac{kg}{m^{3}} } =4.802\times 10^{5} \frac{m^{2}}{s^{2}}

Guess value:                    P_{2} =1\frac{N}{m^{2}}

Given

\frac{P_{1}}{(1.36)^{k}\frac{kg}{m^{3}} }=\frac{P_{}}{(2.682)^{k}\frac{kg}{m^{3}} }
P_{2}: =Find (\rho _{2} )=2.47\times 10^{6} \frac{N}{m^{2}}

(c) Given compression under isentropic (friction less and no heat exchange with the surroundings), the resulting bulk modulus of elasticity of the helium in the tank is equal to the product of the absolute pressure of the helium and the specific heat ratio, which is read from Table A.5 in Appendix A (Equation 1.158 E_{\upsilon } =\frac{dp}{-\frac{dV}{V} } =\frac{dp}{\frac{d\rho }{\rho } } =\rho \frac{dp}{d\rho } =\rho \frac{d(C\rho ^{k} )}{d\rho } =\rho KC\rho ^{k-1} \frac{d\rho }{d\rho} =kC\rho^{k} =kp), as follows:

E_{v} :=kp_{2} =4.1\times 10^{6} \frac{N}{m^{2}}
Table A.5
Physical Properties for Some Common Gases at Standard Sea-Level Atmospheric Pressure at Room Temperature (68^{\circ } or 20^{\circ }C )
Gas
at 68^{\circ }
Chemical
Formula
Molar Mass
(m)
slug=slug-
mol
Density
(ρ)
slug/ft^{3}
Absolute (Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{2}
Gas
Constant
(R)
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R )
Specific Heat Specific Heat
Ratio,
K=C_{\rho }/C_{\upsilon }
C_{\rho } C_{\upsilon }
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R )
Air 28.960 0.002310 0.376 1715 6000 4285 1.40
Carbon dioxide CO_{2} 44.010 0.003540 0.310 1123 5132 4009 1.28
Carbon monoxide CO 28.010 0.002260 0.380 1778 6218 4440 1.40
Helium He 4.003 0.000323 0.411 12.420 31.230 31.230 1.66
Hydrogen H_{2} 2.016 0.000162 0.189 24.680 86.390 86.390 1.40
Methane CH_{2} 16.040 0.001290 0.280 3100 13.400 13.400 1.30
Nitrogen N_{2} 28.020 0.002260 0.368 1773 6210 4437 1.40
Oxygen O_{2} 32.000 0.002580 0.418 1554 5437 3883 1.40
Water vapor H_{2}O 18.020 0.001450 0.212 2760 11.110 8350 1.33
at 20^{\circ } C kg/kg-mol kg/m^{3} 10^{-6} N-sec/m^{2} N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K ) N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K )
Air 28.960 1.2050 18.0 287 1003 716 1.40
Carbon dioxide CO_{2} 44.010 1.8400 14.8 188 858 670 1.28
Carbon monoxide CO 28.010 1.1600 18.2 297 1040 743 1.40
Helium He 4.003 0.1660 19.7 2077 5220 3143 1.66
Hydrogen H_{2} 2.016 0.0839 9.0 4120 14.450 10.330 1.40
Methane CH_{2} 16.040 0.6680 13.4 520 2250 1730 1.30
Nitrogen N_{2} 28.020 1.1600 17.6 297 1040 743 1.40
Oxygen O_{2} 32.000 1.3300 20.0 260 909 649 1.40
Water vapor H_{2}O 18.020 0.7470 10.1 462 1862 1400 1.33

Related Answered Questions