Question 11.4: (Refer to Example Problem 10.17.) Air at standard atmosphere...

(Refer to Example Problem 10.17.) Air at standard atmosphere at an altitude of 25,000 ft above sea level flows at a velocity of 800 ft/sec over a prototype 1500-ft-long square shaped cylinder with a side of 6ft, as illustrated in Figure EP 11.4. A smaller model of the larger prototype is designed in order to study the flow characteristics of turbulent flow over the blunt body. The model fluid is carbon dioxide at 68^{\circ} F , and the model scale, λ is 0.20. (a) Determine the drag force on the prototype square cylinder. (b) Determine the velocity of flow of the carbon dioxide over the model square cylinder and the required pressure of the carbon dioxide in order to achieve dynamic similarity between the model and the prototype. (c) Determine the drag force on the model square cylinder in order to achieve dynamic similarity between the model and the prototype.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In order to determine the drag force on the prototype square cylinder, the drag force equation, Equation 11.91 F_{D} = C_{D} \frac{1}{2} \rho.v^{2} . A , is applied, where the frontal area of the square cylinder is used to compute the drag force. Because the Reynolds number, R > 10,000 (turbulent flow) over a blunt body is assumed, the drag coefficient, C_{D} becomes independent of R, as illustrated in Figure 10.12 for two-dimensional bodies. However, Table 10.4 for two-dimensional bodies presents an easier-to-read magnitude for the drag coefficient, C_{D} for the square cylinder, assuming turbulent flow. Furthermore, Figure 10.19 illustrates that for blunt (square-shaped) two-dimensional bodies, the drag coefficient, C_{D} is independent of M for M ≤ 0.5, while the drag coefficient, C_{D} is dependent on M for M>0.5. The fluid properties for air are given in Table A.1 in Appendix A. The R and M = C^{0.5} are computed as follows:

slug: = 1 lb \frac{sec^{2}}{ft}                                     \rho _{p} : =0.0010663 \frac{slug}{ft^{3}}                                   \mu _{p} : = 0.32166 \times 10^{-6} lb \frac{sec}{ft^{2}}

C_{p}: = 1016.11 \frac{ft}{sec}                                   E_{vp}: = c_{P}^{2} \rho _{P} = 1.101 \times 10^{3} \frac{lb}{ft^{2}}

D_{P}: = 6 ft                                               L_{p}: = 1500 ft                                              V_{P}: = 800 \frac{ft}{sec}

R_{p}: = \frac{\rho _{p} .V_{p} .D_{p}}{\mu _{p}} = 1.591 \times 10^{7}                                   C_{p}: = \frac{\rho _{p} .V_{p}^{2} }{E_{vp}} = 0.62                                   M_{P}: = \sqrt{C_{p}} = 0.787

Thus, since R >10,000, flow is turbulent and thus the drag coefficient, C_{D} is independent of R, and since M> 0.5, the drag coefficient, C_{D} is dependent on M; thus, Figure 10.19 is used to determine the drag coefficient, C_{D} as follows:

C_{Dp}: = 2.1                                   A_{p}: = L_{p} . D_{p} = 9 \times 10^{3} ft^{2}
F_{Dp}: = C_{Dp} \frac{1}{2} \rho _{p}.V^{2}_{p} . A_{p} = 6.449 \times 10^{6} lb

(b) To determine the velocity of flow of the carbon dioxide over the model square cylinder and the required pressure of the carbon dioxide in order to achieve dynamic similarity between the model and the prototype, for turbulent flow over a blunt body, the geometry, L_{i}/L must remain a constant between the model and prototype as follows:

\left(\frac{L_{i}}{L}\right)_{p} = \left(\frac{L_{i}}{L}\right)_{m}

Furthermore, in order to determine the geometry L and D of the model square cylinder, the model scale, λ (inverse of the length ratio) is applied as follows:

\lambda : = 0.20

Guess value:                                   D_{m}: = 1 ft                                   L_{m}: = 1 ft

Given

\lambda = \frac{D_{m}}{D_{p}}                                   \lambda = \frac{L_{m}}{L_{p}}
\left ( \begin{matrix} D_{m} \\ L_{m} \end{matrix} \right ) : = Find ( D_{m},L_{m}) = \left ( \begin{matrix} 1.2 \\ 300 \end{matrix} \right ) ft

And, the geometry is modeled as follows:

\frac{L_{p}}{D_{p}} = 250                                   \frac{L_{m}}{D_{m}} = 250

And, although the relative roughness, ɛ/L should remain a constant between the model and prototype as follows:

\left(\frac{\varepsilon }{L}\right)_{p} = \left(\frac{\varepsilon }{L}\right)_{m}

Figure 10.18is for a sphere of diameter, D and not for a square shaped cylinder. As such, the dependence of the drag coefficient, C_{D} on the relative roughness, ɛ/L will not be modeled in the example problem herein. Furthermore, the C (or M) must remain a constant between the model and prototype as follows:

\underbrace{\left[\left(\frac{\rho v^{2}}{E_{v}} \right)_{p} \right] }_{C_{p}} = \underbrace{\left[\left(\frac{\rho v^{2}}{E_{v}} \right)_{m} \right] }_{C_{m}}

The fluid properties (gas constant and specific heat ratio, which are in dependent of the gas pressure and are only a function of the temperature of the gas) for carbon dioxide are given in TableA.5 in Appendix A. Furthermore, E_{v} for the car bon dioxide is determined by assuming isentropic conditions for the compression and expansion of the gas; thus, E_{v}   = kp, where the pressure is determined by applying the ideal gas law, p = ρRT (see Chapter 1). The sonic velocity for the carbon dioxide, c = \sqrt{E_{v}/\rho } = \sqrt{kRT} , which is independent of the gas pressure and is only a function of the temperature of the gas.

T_{m}: = 68^{\circ } F = 527 \times 67^{\circ } R                                   Rgasc_{m}: = 1123 \frac{ft^{2}}{sec^{2} {^{\circ}}R}                                   k_{m}: = 1.28

Guess value:                                  V_{m}: = 0.1 \frac{ft}{sec}                                   P_{m}: = 1 \frac{lb}{ft^{2}}                                   E_{vm}: = 1 \frac{lb}{ft^{2}}

\rho _{m} : =0.00354 \frac{slug}{ft^{3}}                                   c_{m}: = 1000 \frac{ft}{sec}                                   c_{m}: = 0.5

Given

C_{m} = \frac{\rho _{m} .V_{m}^{2} }{E_{vm}}                                   P_{m} = \rho _{m} . Rgasc_{m} . T_{m}                                   E_{vm}= k_{m}.P_{m}

C_{m} = C_{p}                                   c_{m} = \sqrt{\frac{E_{vm}}{ \rho _{m}} }                                   c_{m} = \sqrt{k_{m}.Rgasc_{m}. T_{m}} 
\left ( \begin{matrix} V_{m} \\ P_{m} \\ E_{Vm} \\ \rho _{m} \\ c_{m} \\ C_{m} \end{matrix} \right ) : = Find (V_{m}, P_{m}, E_{Vm}, \rho _{m}, c_{m}, C_{m})

V_{m} = 685.686 \frac{ft}{s}                                   P_{m} = 79.432 \frac{lb}{ft^{2}}                                   E_{vm} = 101.673 \frac{lb}{ft^{2}}

\rho _{m} = 1.34 \times 10^{-4} \frac{slug}{ft^{3}}                                   c_{m} = 870.916 \frac{ft}{s}                                   C_{m} = 0.62

(c) To determine the drag force on the model square cylinder in order to achieve dynamic similarity between the model and the prototype for turbulent flow over a blunt body, the drag coefficient, C_{D} must remain a constant between the model and the prototype (which is a direct result of maintaining a constant C, and a constant L_{i}/L between the model and the prototype) as follows:

\underbrace{\left[\frac{F_{D}}{\frac{1}{2} \rho v^{2}A} \right]_{p} }_{c_{D_{p}}} = \underbrace{\left[\frac{F_{D}}{\frac{1}{2} \rho v^{2}A} \right]_{m} }_{c_{D_{m}}}

Furthermore, the frontal area of the square cylinder is used to compute the drag force as follows:

A_{m}: = L_{m} . D_{m} = 360 ft^{2}

Guess value:                                   F_{Dm}: = 1 lb                                   C_{Dm}: = 1

Given

C_{Dm} = \frac{ F_{Dm}}{\frac{1}{2} \rho _{m} . v_{m}^{2}.A_{m}}

C_{Dm} = C_{Dp}
\left ( \begin{matrix} F_{Dm} \\ C_{Dm} \end{matrix} \right ) : = Find (F_{Dm}, C_{Dm})

F_{Dm} = 2.382 \times 10^{4} lb                                   C_{Dm} = 2.1

Therefore, although the similarity requirements regarding the independent π term, L_{i}/L and the independent π term, C (“elastic model”) are theoretically satisfied ( C_{p} = C_{m} = 0.62), the dependent π term (i.e., the drag coefficient, C_{D} ) will actually/practically remain a constant between the model and its prototype ( C_{Dp} = C_{Dm} = 2.1) only if it is practical to maintain/attain the model velocity, drag force, fluid, scale, and cost. Furthermore, because the drag coefficient, C_{D} is independent of R for blunt bodies, R does not need to remain a constant between the model and the prototype as follows:

\mu _{m} : = 0.310 \times 10^{-6} lb \frac{sec}{ft^{2}}

R_{m}: = \frac{\rho _{m} .V_{m} .D_{m}}{\mu _{m}} = 3.558 \times 10^{5}                                   R_{p}= 1.591 \times 10^{7}

One may ask: Is the model speed too high to be able to maintain for the model? If it is too high, then this is a “distorted model” that needs to be adjusted in order to achieve a “true model” or as close to it as possible. The answer is no, the speed of carbon dioxide under pressure is not too high for the model.

 

Table 10.4
The Drag Coefficient, C_{D} for Two-Dimensional Bodies at Various Orientations to the Direction of Flow, v for R > 10,000
Sharp corners: C_{D}
L/D C_{D} L/D Laminar Turbulent
0.0 * 1.9 1 1.2 0.30
0.1 1.9 2 0.60 0.20
0.4 2.3 4 0.35 0.15
0.5 2.5 8 0.25 0.10
0.7 2.7
1.0 2.2
1.2 2.1
2.0 1.7
2.5 1.4
3.0 1.3
*Corresponds to thin plate
Rectangular rod Elliptical rod
Round front edge: Sharp corners:
C_{D} = 2.2
L/D C_{D}
0.5 1.16
1.0 0.90 Round corners (r/D = 0.2):
C_{D} = 1.2
2.0 0.70
4.0 0.68
6.0 0.64
Rectangular rod Square rod
Semicircular rod Semicircular shell Equilateral triangular rod Hexagonal rod

 

 

Table A.1
Physical Properties for the International Civil Aviation Organization (ICAO) Standard Atmosphere as a Function of Elevation above Sea Level
Elevation
above Sea
Level
ft
Temperature (θ)
^{\circ } F
Absolute
Pressure (p)
psia
Density \left(\rho \right)
slug/ft^{3}
Specific
Weight \left(\gamma \right)
lb/ft^{3}
Absolute
(Dynamic)
Viscosity \left(\mu  \right)
10^{-6} lb – sec/ft^{2}
Kinematic
Viscosity (ν)
10^{-3} ft^{2}/sec
Speed of
Sound (c)
ft/sec
Acceleration
due to
Gravity (g)
ft/sec^{2}
0 59.000 14.69590 0.002376800 0.0764720 0.37372 0.15724 1116.45 32.174
5000 41.173 12.22830 0.002048100 0.0658640 0.36366 0.17756 1097.08 32.158
10,000 23.355 10.10830 0.001755500 0.0564240 0.35343 0.20133 1077.40 32.142
15,000 5.545 8.29700 0.001496100 0.0480680 0.34302 0.22928 1057.35 32.129
20,000 -12.255 6.75880 0.001267200 0.0406940 0.33244 0.26234 1036.94 32.113
25,000 -30.048 5.46070 0.001066300 0.0342240 0.32166 0.30167 1016.11 32.097
30,000 -47.832 4.37260 0.000890650 0.0285730 0.31069 0.34884 994.85 32.081
35,000 -65.607 3.46760 0.000738190 0.0236720 0.29952 0.40575 973.13 32.068
40,000 -69.700 2.73000 0.000587260 0.0188230 0.29691 0.50559 968.08 32.052
45,000 -69.700 2.14890 0.000462270 0.0148090 0.29691 0.64230 968.08 32.036
50,000 -69.700 1.69170 0.000363910 0.0116520 0.29691 0.81589 968.08 32.020
60,000 -69.700 1.04880 0.000225610 0.0072175 0.29691 1.31600 968.08 31.991
70,000 -67.425 0.65087 0.000139200 0.0044485 0.29836 2.14340 970.90 31.958
80,000 -61.976 0.40632 0.000085707 0.0027366 0.30182 3.52150 977.62 31.930
90,000 -56.535 0.25540 0.000053145 0.0016950 0.30525 5.74360 984.28 31.897
100,000 -51.099 0.16160 0.000033182 0.0010575 0.30865 9.30180 990.91 31.868
Elevation
above Sea
Level
Km
Temperature (θ)
^{\circ } C
Absolute
Pressure (p)
kPa abs
Density \left(\rho \right)
kg/m^{3}
Specific
Weight \left(\gamma \right)
N/m^{3}
Absolute
(Dynamic)
Viscosity \left(\mu  \right)
10^{-6} N – sec/m^{2}
Kinematic
Viscosity (ν)
10^{-6} m^{2}/sec
Speed of
Sound (c)
m/sec
Acceleration
due to
Gravity (g)
m/sec^{2}
0 15.000 101.325 1.22500 12.0131 17.894 14.607 340.294 9.80665
1 8.501 89.876 1.11170 10.8987 17.579 15.813 336.430 9.80360
2 2.004 79.501 1.00660 9.8652 17.260 17.147 332.530 9.80050
3 -4.500 70.121 0.90925 8.9083 16.938 18.628 328.580 9.79740
4 -10.984 61.660 0.81935 8.0250 16.612 20.275 324.590 9.79430
5 -17.474 54.048 0.73643 7.2105 16.282 22.110 320.550 9.79120
6 -23.963 47.217 0.66011 6.4613 15.949 24.161 316.450 9.78820
8 -36.935 35.651 0.52579 5.1433 15.271 29.044 308.110 9.78200
10 -49.898 26.499 0.41351 4.0424 14.577 35.251 299.530 9.77590
12 -56.500 19.399 0.31194 3.0476 14.216 45.574 295.070 9.76970
14 -56.500 14.170 0.22786 2.2247 14.216 62.391 295.070 9.76360
16 -56.500 10.352 0.16647 1.6243 14.216 85.397 295.070 9.75750
18 -56.500 7.565 0.12165 1.1862 14.216 116.860 295.070 9.75130
20 -56.500 5.529 0.08891 0.8664 14.216 159.890 295.070 9.74520
25 -51.598 2.549 0.04008 0.3900 14.484 361.350 298.390 9.73000
30 -46.641 1.197 0.01841 0.1788 14.753 801.340 301.710 9.71470

 

 

Table A.5
Physical Properties for Some Common Gases at Standard Sea-Level Atmospheric Pressure at Room Temperature (68^{\circ } F or 20^{\circ }C )
Gas
at 68^{\circ }F
Chemical
Formula
Molar Mass
(m)
slug=slug-
mol
Density
(ρ)
slug/ft^{3}
Absolute (Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{2}
Gas
Constant
(R)
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R )
Specific Heat Specific Heat
Ratio,
K=C_{\rho }/C_{\upsilon }
C_{\rho } C_{\upsilon }
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R )
Air 28.960 0.002310 0.376 1715 6000 4285 1.40
Carbon dioxide CO_{2} 44.010 0.003540 0.310 1123 5132 4009 1.28
Carbon monoxide CO 28.010 0.002260 0.380 1778 6218 4440 1.40
Helium He 4.003 0.000323 0.411 12,420 31,230 18,810 1.66
Hydrogen H_{2} 2.016 0.000162 0.189 24,680 86,390 61,710 1.40
Methane CH_{2} 16.040 0.001290 0.280 3100 13,400 10,300 1.30
Nitrogen N_{2} 28.020 0.002260 0.368 1773 6210 4437 1.40
Oxygen O_{2} 32.000 0.002580 0.418 1554 5437 3883 1.40
Water vapor H_{2}O 18.020 0.001450 0.212 2760 11,110 8350 1.33
at 20^{\circ } C kg/kg-mol kg/m^{3} 10^{-6} N-sec/m^{2} N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K ) N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K )
Air 28.960 1.2050 18.0 287 1003 716 1.40
Carbon dioxide CO_{2} 44.010 1.8400 14.8 188 858 670 1.28
Carbon monoxide CO 28.010 1.1600 18.2 297 1040 743 1.40
Helium He 4.003 0.1660 19.7 2077 5220 3143 1.66
Hydrogen H_{2} 2.016 0.0839 9.0 4120 14,450 10,330 1.40
Methane CH_{2} 16.040 0.6680 13.4 520 2250 1730 1.30
Nitrogen N_{2} 28.020 1.1600 17.6 297 1040 743 1.40
Oxygen O_{2} 32.000 1.3300 20.0 260 909 649 1.40
Water vapor H_{2}O 18.020 0.7470 10.1 462 1862 1400 1.33

 

 

10.12
10.19
10.18

Related Answered Questions