Question 12.5: Repeat Example 12.1 for an electron with spin down along the...

Repeat Example 12.1 for an electron with spin down along the y direction.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For an electron with spin-down along the y direction (Problem 4.32(a)):

|\Psi\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c} 1 \\ -i \end{array}\right) ; \quad\langle\Psi|=\frac{1}{\sqrt{2}}\left(\begin{array}{ll} 1 & i \end{array}\right) .

So

\rho_{11}=\frac{1}{2}\left[\left(\begin{array}{ll} 1 & 0 \end{array}\right)\left(\begin{array}{c} 1 \\ -i \end{array}\right)\right]\left[\left(\begin{array}{ll} 1 & i \end{array}\right)\left(\begin{array}{l} 1 \\ 0 \end{array}\right)\right]=\frac{1}{2}(1)(1)=\frac{1}{2} .

\rho_{12}=\frac{1}{2}\left[\left(\begin{array}{ll} 1 & 0 \end{array}\right)\left(\begin{array}{c} 1 \\ -i \end{array}\right)\right]\left[\left(\begin{array}{ll} 1 & i \end{array}\right)\left(\begin{array}{l} 0 \\ 1 \end{array}\right)\right]=\frac{1}{2}(1)(i)=\frac{i}{2} .

\left.\rho_{21}=\frac{1}{2}\left[\left(\begin{array}{ll} 0 & 1 \end{array}\right)\left(\begin{array}{c} 1 \\ -i \end{array}\right)\right]\left[\begin{array}{ll} 1 & i\end{array}\right)\left(\begin{array}{l} 1 \\ 0 \end{array}\right)\right]=\frac{1}{2}(-i)(1)=-\frac{i}{2} .

\rho_{22}=\frac{1}{2}\left[\left(\begin{array}{ll} 0 & 1 \end{array}\right)\left(\begin{array}{c} 1 \\ -i \end{array}\right)\right]\left[\left(\begin{array}{ll} 1 & i \end{array}\right)\left(\begin{array}{l} 0 \\ 1 \end{array}\right)\right]=\frac{1}{2}(-i)(i)=\frac{1}{2} .

and

\rho=\frac{1}{2}\left(\begin{array}{cc} 1 & i \\ -i & 1 \end{array}\right) .

Or, more efficiently,

\rho=|\Psi\rangle\langle\Psi|=\frac{1}{2}\left(\begin{array}{c} 1 \\ -i \end{array}\right)\left(\begin{array}{ll} 1 & i \end{array}\right)=\frac{1}{2}\left(\begin{array}{cc} 1 & i \\ -i & 1 \end{array}\right) .

Related Answered Questions