Question 6.69: Repeat Prob. 6–68, with the bar subject to a completely reve...

Repeat Prob. 6–68, with the bar subject to a completely reversed torsional moment of 2000 lbf · in.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Prob. 6-68:

\begin{aligned}S _{e}^{\prime} &=23.2 L N (1,0.138)  kpsi \\k _{a} &=0.644 L N (1,0.11) \\k_{b} &=0.936\end{aligned}

Eq. (6-74):        k _{c}=0.328(76)^{0.125} L N (1,0.125)=0.564 L N (1,0.125)

Eq. (6-71):        S _{e}=[0.644 L N (1,0.11)](0.936)[0.564 L N (1,0.125)][23.2 L N (1,0.138)]

\begin{aligned}&\bar{S}_{e}=0.644(0.936)(0.564)(23.2)=7.89 kpsi \\&C_{S e}=\left(0.11^{2}+0.125^{2}+0.138^{3}\right)^{1 / 2}=0.216\end{aligned}

Table A-16:     d / D=0, a / D=(3 / 16) / 1.5=0.125, A=0.89, K _{t s}=1.64

From Eqs. (6-78) and(7-79), and Table 6-15

K _{f s}=\frac{1.64 L N (1,0.10)}{1+\frac{2(1.64-1)}{1.64} \frac{5 / 76}{\sqrt{3 / 32}}}=1.40 L N (1,0.10)

Table A-16:

\begin{aligned}J_{\text {net }} &=\frac{\pi A D^{4}}{32}=\frac{\pi(0.89)\left(1.5^{4}\right)}{32}=0.4423  in ^{4} \\\tau_{a} &= K _{f s} \frac{T_{a} D}{2 J_{\text {net }}}=1.40[ L N (1,0.10)] \frac{2(1.5)}{2(0.4423)}=4.75 L N (1,0.10)  kpsi\end{aligned}

From Eq. (6-57):

z=-\frac{\ln (7.89 / 4.75) \sqrt{\left(1+0.10^{2}\right) /\left(1+0.216^{2}\right)}}{\sqrt{\ln \left[\left(1+0.10^{2}\right)\left(1+0.216^{2}\right)\right]}}=-2.08

Table A-10p_{f}=0.0188, \quad R=1-p_{f}=1-0.0188=0.981

___________________________________________________________________________________________________________________

Eq. (6-57):   \sum \frac{n_{i}}{N_{i}}=c

Eq. (6-71): S _{e}= k _{a} k_{b} k _{c} k _{d} k _{f} S _{e}^{\prime}

Eq. (6-74):  \left( k _{c}\right)_{\text {torsion }}=0.328 \bar{S}_{u t}^{0.125} L N (1,0.125)

Eq. (6-78) : \bar{K}_{f}=\frac{K_{t}}{1+\frac{2\left(K_{t}-1\right)}{K_{t}} \frac{\sqrt{a}}{\sqrt{r}}}

Eq. (6-79) : K _{f}=\bar{K}_{f} L N \left(1, C_{K_{f}}\right)

Table 6–15
Heywood’s Parameter
√a and coefficients of
variation C_{K f} for steels
Notch Type \sqrt{ a }(\sqrt{\text { in }}) ,S_{\text {ut }} \text{in kpsi} \sqrt{ a }(\sqrt{ m m }) , S_{\text {ut }} \text{in MPa} Coefficient of Variation C_{K f}
Transverse hole 5 / S_{u t} 174 / S_{u t} 0.1
Shoulder 4 / S_{u t} 139 / S_{u t} 0.11
Groove 3 / S_{u t} 104 / S_{u t} 0.15

Related Answered Questions