Question 3.82: Repeat Problem 3–81 for liquid oxygen, which has a boiling t...

Repeat Problem 3–81 for liquid oxygen, which has a boiling temperature of -183°C, a heat of vaporization of 213 kJ/kg, and a density of 1140 kg/m31140  kg / m ^{3} at 1 atm pressure.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A 3-m diameter spherical tank filled with liquid oxygen at 1 atm and -183°C is exposed to convection and radiation with the surrounding air and surfaces. The rate of evaporation of liquid oxygen in the tank as a result of the heat gain from the surroundings for the cases of no insulation, 5-cm thick fiberglass insulation, and 2-cm thick superinsulation are to be determined.

Assumptions 1 Heat transfer is steady since the specified thermal conditions at the boundaries do not change with time. 2 Heat transfer is one-dimensional since there is thermal symmetry about the midpoint. 3 The combined heat transfer coefficient is constant and uniform over the entire surface. 4 The temperature of the thin-shelled spherical tank is said to be nearly equal to the temperature of the oxygen inside, and thus thermal resistance of the tank and the internal convection resistance are negligible.

Properties The heat of vaporization and density of liquid oxygen at 1 atm are given to be 213 kJ/kg and 1140 kg/m31140  kg / m ^{3}, respectively. The thermal conductivities are given to be k = 0.035 W/m⋅°C for fiberglass insulation and k = 0.00005 W/m⋅°C for super insulation.

Analysis (a) The heat transfer rate and the rate of evaporation of the liquid without insulation are

A=πD2=π(3 m)2=28.27 m2 A=\pi D^{2}=\pi(3  m )^{2}=28.27  m ^{2}

 

Ro=1hoA=1(35 W/m2C)(28.27 m2)=0.00101 C/W R_{o}=\frac{1}{h_{o} A}=\frac{1}{\left(35  W / m ^{2} \cdot{ }^{\circ} C \right)\left(28.27  m ^{2}\right)}=0.00101{ }^{\circ}  C / W

 

Q˙=Ts1T2Ro=[15(183)]C0.00101 C/W=196,040 W \dot{Q}=\frac{T_{s 1}-T_{\infty 2}}{R_{o}}=\frac{[15-(-183)]^{\circ} C }{0.00101^{\circ}  C / W } = 196,040  W

 

Q˙=m˙hfgm˙=Q˙hfg=196.040 kJ/s213 kJ/kg=0.920 kg/s \dot{Q}=\dot{m} h_{f g} \longrightarrow \dot{m}=\frac{\dot{Q}}{h_{f g}}=\frac{196.040  kJ / s }{213  kJ / kg }= 0 . 9 2 0  k g / s

 

(b) The heat transfer rate and the rate of evaporation of the liquid with a 5-cm thick layer of fiberglass insulation are

A=πD2=π(3.1 m)2=30.19 m2A =\pi D^{2}=\pi(3.1  m )^{2}=30.19  m ^{2}

 

Ro=1hoA=1(35 W/m2C)(30.19 m2)=0.000946 C/W R_{o}=\frac{1}{h_{o} A}=\frac{1}{\left(35  W / m ^{2} \cdot{ }^{\circ} C \right)\left(30.19  m ^{2}\right)}=0.000946^{\circ}  C / W

 

Rinsulation =r2r14πkr1r2=(1.551.5) m4π(0.035 W/mC)(1.55 m)(1.5 m)=0.0489 C/W R_{\text {insulation }}=\frac{r_{2}-r_{1}}{4 \pi k r_{1} r_{2}}=\frac{(1.55-1.5)  m }{4 \pi\left(0.035  W / m \cdot{ }^{\circ} C \right)(1.55  m )(1.5  m )}=0.0489{ }^{\circ}  C / W

 

Rtotal =Ro+Rinsulation =0.000946+0.0489=0.0498 C/W R_{\text {total }}=R_{o}+R_{\text {insulation }}=0.000946+0.0489=0.0498^{\circ}  C / W

 

Q˙=Ts1T2Rtotal =[15(183)]C0.0498 C/W=3976 W \dot{Q}=\frac{T_{s 1}-T_{\infty 2}}{R_{\text {total }}}=\frac{[15-(-183)]^{\circ} C }{0.0498^{\circ}  C / W }=3976  W

 

Q˙=m˙hfgm˙=Q˙hfg=3.976 kJ/s213 kJ/kg=0.0187 kg/s \dot{Q}=\dot{m} h_{f g} \longrightarrow \dot{m}=\frac{\dot{Q}}{h_{f g}}=\frac{3.976  kJ / s }{213  kJ / kg }= 0 . 0 1 8 7  k g / s

 

(c) The heat transfer rate and the rate of evaporation of the liquid with a 2-cm superinsulation is

A=πD2=π(3.04 m)2=29.03 m2 A=\pi D^{2}=\pi(3.04  m )^{2}=29.03  m ^{2}

 

Ro=1hoA=1(35 W/m2C)(29.03 m2)=0.000984 C/W R_{o}=\frac{1}{h_{o} A}=\frac{1}{\left(35  W / m ^{2} \cdot{ }^{\circ} C \right)\left(29.03  m ^{2}\right)}=0.000984^{\circ}  C / W

 

Rinsulation =r2r14πkr1r2=(1.521.5) m4π(0.00005 W/mC)(1.52 m)(1.5 m)=13.96 C/W R_{\text {insulation }}=\frac{r_{2}-r_{1}}{4 \pi k r_{1} r_{2}}=\frac{(1.52-1.5)  m }{4 \pi\left(0.00005  W / m \cdot{ }^{\circ} C \right)(1.52  m )(1.5  m )}=13.96^{\circ}  C / W

 

Rtotal =Ro+Rinsulation =0.000984+13.96=13.96 C/W R_{\text {total }}=R_{o}+R_{\text {insulation }}=0.000984+13.96=13.96^{\circ}  C / W

 

Q˙=Ts1T2Rtotal =[15(183)]C13.96 C/W=14.18 W \dot{Q}=\frac{T_{s 1}-T_{\infty 2}}{R_{\text {total }}}=\frac{[15-(-183)]^{\circ} C }{13.96^{\circ}  C / W }=14.18  W

 

Q˙=m˙hfgm˙=Q˙hfg=0.01418 kJ/s213 kJ/kg=0.000067 kg/s \dot{Q}=\dot{m} h_{f g} \longrightarrow \dot{m}=\frac{\dot{Q}}{h_{f g}}=\frac{0.01418  kJ / s }{213  kJ / kg }=0.000067  kg / s
8
9
10

Related Answered Questions