Equilibrium
Consider a FBD of the rigid bar. Assume tension forces in members (1) and (2). A moment equation about pin D gives the best information for this situation:
\Sigma M_{D}=(3 m ) F_{1}-(1 m ) F_{2}=0 \quad \therefore F_{2}=3 F_{1} (a)
Geometry of Deformations Relationship
Draw a deformation diagram of the rigid bar. The deflections of the rigid bar are related by similar triangles:
\frac{v_{A}}{4 m }=\frac{v_{B}}{3 m }=\frac{v_{C}}{1 m } (b)
There are no gaps, clearances, or other misfits at pins B and C; therefore, Eq. (b) can be rewritten in terms of the member deformations as:
\frac{-\delta_{1}}{3 m }=\frac{\delta_{2}}{1 m } \quad \therefore \delta_{1}=-3 \delta_{2} (c)
Note: To understand the negative sign associated with \delta_{1}, see Section 5.5 for discussion of statically indeterminate rigid bar configurations with opposing members.
Force-Temperature-Deformation Relationships
\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2} (d)
Compatibility Equation
\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}=-3\left[\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}\right] (e)
Solve the Equations
For this situation, \Delta T_{1}=\Delta T_{2}=\Delta T=40^{\circ} C . Substitute Eq. (a) into Eq. (e):
\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T L_{1}=-3\left[\frac{\left(3 F_{1}\right) L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T L_{2}\right]
and solve for F_{1}:
\begin{aligned}F_{1} &=-\frac{\Delta T\left(3 \alpha_{2} L_{2}+\alpha_{1} L_{1}\right)}{\frac{L_{1}}{A_{1} E_{1}}+\frac{9 L_{2}}{A_{2} E_{2}}} \\&=-\frac{\left(40^{\circ} C \right)\left[3\left(22.5 \times 10^{-6} /{ }^{\circ} C \right)(920 mm )+\left(16.9 \times 10^{-6} /{ }^{\circ} C \right)(840 mm )\right]}{\frac{940 mm }{\left(400 mm ^{2}\right)\left(100,000 N / mm ^{2}\right)}+\frac{9(920 mm )}{\left(600 mm ^{2}\right)\left(70,000 N / mm ^{2}\right)}} \\&=-13,990 N =-13.990 kN\end{aligned}
Backsubstitute into Eq. (a) to find F_{2} = −41.970 kN.
(a) Normal Stresses
The normal stresses in each axial member can now be calculated:
\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{-13,990 N }{400 mm ^{2}}=35.0 MPa ( C ) \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-41,970 N }{600 mm ^{2}}=70.0 MPa ( C )\end{aligned}
(b) Deflection of the rigid bar at A
Calculate the deformation of one of the axial members, say member (1):
\begin{aligned}\delta_{1} &=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \\&=\frac{(-13,990 N )(840 mm )}{\left(400 mm ^{2}\right)\left(100,000 N / mm ^{2}\right)}+\left(16.9 \times 10^{-6} /{ }^{\circ} C \right)\left(40^{\circ} C \right)(840 mm ) \\&=0.27405 mm\end{aligned}
Since there are no gaps at pin B, the rigid bar deflection at B is equal to the deformation of member (1);
therefore, v_{B}=\delta_{1}=0.27405 mm \text { (upward). } From similar triangles, the deflection of the rigid bar at A is related to v_{B} by:
\frac{v_{A}}{4 m}=\frac{v_{B}}{3 m}
The deflection of the rigid bar at A is thus:
v_{A}=\frac{4 m }{3 m } v_{B}=\frac{4 m }{3 m }(0.27405 mm )=0.365 mm \uparrow