Question 4.11: SAE 10W oil at 20°C flows at 1.1 m^3/h through a horizontal ...

SAE 10W oil at 20°C flows at 1.1 m^3/h through a horizontal pipe with d = 2 cm and L = 12 m. Find (a) the average velocity, (b) the Reynolds number, (c) the pressure drop, and (d) the power required.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• Assumptions: Laminar, steady, Hagen-Poiseuille pipe flow.

• Approach: The formulas of Eqs. (4.138) are appropriate for this problem. Note that R = 0.01 m.

V_{max}=v_z(r=0)=\left(-\frac{dp}{dz}\right)\frac{R^2}{4\mu}

 

V_{avg}=\frac{1}{A}\int{v_z dA}=\frac{1}{\pi R^2}\int_0^R{V_{max}\left(1-\frac{r^2}{R^2}\right)2\pi r  dr}=\frac{V_{max}}{2}=\left(-\frac{dp}{dz}\right)\frac{R^2}{8\mu}

 

Q=\int{v_z dA}=\int_0^R{V_{max}\left(1-\frac{r^2}{R^2}\right)2\pi r  dr}=\pi R^2 V_{avg}=\frac{4R^4}{8\mu}\left(-\frac{dp}{dz}\right)=\frac{\pi R^4 \Delta p}{8\mu L}

 

\tau_{wall}=\mu\left|\frac{\partial v_z}{\partial r}\right|_{r=R}=\frac{4\mu V_{avg}}{R}=\frac{R}{2}\left(-\frac{dp}{dz}\right)=\frac{R}{2}\frac{\Delta p}{L}                                       (4.138)

• Property values: From Table A.3 for SAE 10W oil, \rho = 870  kg/m^3 and µ = 0.104 kg/(m-s).

Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F)
Liquid \rho,  kg/m^3 µ, kg/(m·s) Y, N/m^* p_{\nu},  N/m^2 Bulk modulus K,
N/m^2
Viscosity
parameter C^{\dagger}
Ammonia 608 2.20 E-4 2.13 E-2 9.10 E+5 1.82 E+9 1.05
Benzene 881 6.51 E-4 2.88 E-2 1.01 E+4 1.47 E+9 4.34
Carbon tetrachloride 1590 9.67 E-4 2.70 E-2 1.20 E+4 1.32 E+9 4.45
Ethanol 789 1.20 E-3 2.28 E-2 5.73 E+3 1.09 E+9 5.72
Ethylene glycol 1117 2.14 E-2 4.84 E-2 1.23 E+1 3.05 E+9 11.7
Freon 12 1327 2.62 E-4 7.95 E+8 1.76
Gasoline 680 2.92 E-4 2.16 E-2 5.51 E+4 1.3 E+9 3.68
Glycerin 1260 1.49 6.33 E-2 1.43 E-2 4.35 E+9 28.0
Kerosene 804 1.92 E-3 2.8 E-2 3.11 E+3 1.41 E+9 5.56
Mercury 13,550 1.56 E-3 4.84 E-1 1.13 E-3 2.85 E+10 1.07
Methanol 791 5.98 E-4 2.25 E-2 1.34 E+4 1.03 E+9 4.63
SAE 10W oil 870 1.04 E- 1^{\ddagger} 3.6 E-2 1.31 E+9 15.7
SAE 10W30 oil 876 1.7 E-1^{\ddagger} 14.0
SAE 30W oil 891 2.9 E-1^{\ddagger} 3.5 E-2 1.38 E+9 18.3
SAE 50W oil 902 8.6 E-1^{\ddagger} 20.2
Water 998 1.00 E-3 7.28 E-2 2.34 E+3 2.19 E+9 Table A.1
Seawater (30%) 1025 1.07 E-3 7.28 E-2 2.34 E+3 2.33 E+9 7.28

^*In contact with air.
^{\dagger}The viscosity–temperature variation of these liquids may be fitted to the empirical expression

\frac{\mu}{\mu_{20^{\circ}C}}\approx \exp \left[C\left(\frac{293  K}{T  K}-1\right)\right]

with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.
^{\ddagger}Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.

Table A.1 Viscosity and Density of Water at 1 atm
T,°C \rho,  kg/m^3 µ, N·s/m^2 \nu,  m^2/s T,°F \rho,  slug/ft^3 \mu,  Ib\cdot s/ft^2 \nu,  ft^2/s
0 1000 1.788 E-3 1.788 E-6 32 1.94 3.73 E-5 1.925 E-5
10 1000 1.307 E-3 1.307 E-6 50 1.94 2.73 E-5 1.407 E-5
20 998 1.003 E-3 1.005 E-6 68 1.937 2.09 E-5 1.082 E-5
30 996 0.799 E-3 0.802 E-6 86 1.932 1.67 E-5 0.864 E-5
40 992 0.657 E-3 0.662 E-6 104 1.925 1.37 E-5 0.713 E-5
50 988 0.548 E-3 0.555 E-6 122 1.917 1.14 E-5 0.597 E-5
60 983 0.467 E-3 0.475 E-6 140 1.908 0.975 E-5 0.511 E-5
70 978 0.405 E-3 0.414 E-6 158 1.897 0.846 E-5 0.446 E-5
80 972 0.355 E-3 0.365 E-6 176 1.886 0.741 E-5 0.393 E-5
90 965 0.316 E-3 0.327 E-6 194 1.873 0.660 E-5 0.352 E-5
100 958 0.283 E-3 0.295 E-6 212 1.859 0.591 E-5 0.318 E-5
Suggested curve fits for water in the range 0 ≤ T ≤ 100°C:
\rho(kg/m^3)\approx 1000-0.0178 |T^{\circ}C-4^{\circ}C|^{1.7} \pm 0.2 \%
\ln \frac{\mu}{\mu_0}\approx 1.704-5.306_z+{7.003_z}^2
z=\frac{273  K}{T  K}               \mu_0=1.788E-3  kg/(m\cdot s)

• Solution steps: The average velocity follows easily from the flow rate and the pipe area:

V_{avg}=\frac{Q}{\pi R^2}=\frac{(1.1/3600)  m^3/s}{\pi(0.01  m)^2}=0.973\frac{m}{s}

We had to convert Q to m^3/s. The (diameter) Reynolds number follows from the average velocity:

Re_d=\frac{\rho V_{avg}d}{\mu}=\frac{(870  kg/m^3)(0.973  m/s)(0.02  m)}{0.104  kg/(m-s)}=163

This is less than the “transition” value of 2100; so the flow is indeed laminar, and the formulas are valid. The pressure drop is computed from the third of Eqs. (4.138):

Q=\frac{1.1}{3600}\frac{m^3}{s}=\frac{\pi R^4 \Delta p}{8\mu L}=\frac{\pi(0.01  m)^4 \Delta p}{8(0.104  kg/(m-s))(12  m)}    solve for Δp = 97,100 Pa

When using SI units, the answer returns in pascals; no conversion factors are needed. Finally, the power required is the product of flow rate and pressure drop:

Power=Q \Delta p=\left(\frac{1.1}{3600}  m^3/s\right)(97,100  N/m^2)=29.7\frac{N-m}{s}=29.7  W

• Comments: Pipe flow problems are straightforward algebraic exercises if the data are compatible. Note again that SI units can be used in the formulas without conversion factors.

Related Answered Questions