Question 11.191: Sand is discharged at A from a conveyor belt and falls onto ...

Sand is discharged at A from a conveyor belt and falls onto the top of a stockpile at B. Knowing that the conveyor belt forms an angle \alpha =25° with the horizontal, determine (a) the speed \nu_{ 0 } of the belt, (b) the radius of curvature of the trajectory described by the sand at Point B.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The motion is projectile motion. Place the origin at Point A. Then x_{0}=0 and y_{0}=0.

The coordinates of Point B are x_{B}=30 \mathrm{\ ft} and y_{B}=-18 \mathrm{\ ft}.

Horizontal motion:

\begin{aligned}\nu_{x} & =\nu_{0} \cos 25^{\circ} & \text{(1)} \\x & =\nu_{0} t \cos 25^{\circ} & \text{(2)}\end{aligned}

Vertical motion:

\begin{aligned}\nu_{y} & =\nu_{0} \sin 25^{\circ}-g t & \text{(3)} \\y & =\nu_{0} t \sin 25^{\circ}-\frac{1}{2} g t^{2} & \text{(4)}\end{aligned}

At Point B, Eq. (2) gives

\nu_{0} t_{B}=\frac{x_{B}}{\cos 25^{\circ}}=\frac{30}{\cos 25^{\circ}}=33.101 \mathrm{\ ft}

Substituting into Eq. (4),

\begin{aligned}-18 & =(33.101)\left(\sin 25^{\circ}\right)-\frac{1}{2}(32.2) t_{B}^{2} \\t_{B} & =1.40958 \mathrm{~s}\end{aligned}

(a) Speed of the belt.

\nu_{0}=\frac{\nu_{0} t_{B}}{t_{B}}=\frac{33.101}{1.40958}=23.483

\nu_{0}=23.4 \mathrm{\ ft} / \mathrm{s}\blacktriangleleft

Eqs. (1) and (3) give

\begin{aligned}\nu_{x} & =23.483 \cos 25^{\circ}=21.283 \mathrm{\ ft} / \mathrm{s} \\\nu_{y} & =(23.483) \sin 25^{\circ}-(32.2)(1.40958)=-35.464 \mathrm{~ft} / \mathrm{s} \\\tan \theta \frac{-\nu_{y}}{\nu_{x}} & =1.66632 \quad \theta=59.03^{\circ} \\\nu & =41.36 \mathrm{\ ft} / \mathrm{s}\end{aligned}

Components of acceleration.

\begin{gathered}\mathbf{a}=32.2 \mathrm{\ ft} / \mathrm{s}^{2}\downarrow , \quad a_{t}=32.2 \sin \theta \\a_{n}=32.2 \cos \theta=32.2 \cos 59.03^{\circ}=16.57 \mathrm{\ ft} / \mathrm{s}^{2}\end{gathered}

(b) Radius of curvature at B.

\begin{aligned}& a_{n}=\frac{\nu^{2}}{\rho} \\& \rho=\frac{\nu^{2}}{a_{n}}=\frac{(41.36)^{2}}{16.57} & \rho=103.2 \mathrm{\ ft}\blacktriangleleft\end{aligned}

11.191.

Related Answered Questions