Show that \mathfrak{B} = \left\{\left [ \begin{matrix} 1 \\ 2 \\ -1 \end{matrix} \right ] , \left [ \begin{matrix} 1 \\ 1 \\ 1 \end{matrix} \right ] \right\} is a basis for the plane -3x_{1} + 2x_{2} + x_{3} = 0.
Show that \mathfrak{B} = \left\{\left [ \begin{matrix} 1 \\ 2 \\ -1 \end{matrix} \right ] , \left [ \begin{matrix} 1 \\ 1 \\ 1 \end{matrix} \right ] \right\} is a basis for the plane -3x_{1} + 2x_{2} + x_{3} = 0.
To prove that B is a basis for the plane, we must show that B is linearly independent and spans the plane.
We first observe that B is clearly linearly independent since neither vector is a scalar multiple of the other.
For spanning, first observe that any vector \vec{x} in the plane must satisfy the condition of the plane. Hence, every vector in the plane has the form
\vec{x} = \left [ \begin{matrix} x_{1} \\ x_{2} \\ 3x_{1} – 2x_{2} \end{matrix} \right ]
since x_{3} = 3x_{1} – 2x_{2}. Therefore, we now just need to show that the equation
t_{1} \left [ \begin{matrix} 1 \\ 2 \\ -1 \end{matrix} \right ] + t_{2} \left [ \begin{matrix} 1 \\ 1 \\ 1 \end{matrix} \right ] = \left [ \begin{matrix} x_{1} \\ x_{2} \\ 3x_{1} – 2x_{2} \end{matrix} \right ]
is always consistent. Row reducing the corresponding augmented matrix gives
\left [ \begin{matrix} 1 & 1 \\ 2 & 1 \\ -1 & 1 \end{matrix} \left | \begin{matrix} x_{1} \\ x_{2} \\ 3x_{1} – 2x_{2} \end{matrix} \right.\right ] \thicksim \left [ \begin{matrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{matrix} \left | \begin{matrix} x_{1} \\ 2x_{1} – x_{2} \\ 0 \end{matrix} \right. \right ]
The system is consistent for all x_{1}, x_{2} \in \mathbb{R} and hence B also spans the plane.