Question 4.8: Show that the interaction energy of two dipoles separated by...

Show that the interaction energy of two dipoles separated by a dis placement r is

U=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}\left[ p _{1} \cdot p _{2}-3\left( p _{1} \cdot \hat{ r }\right)\left( p _{2} \cdot \hat{ r }\right)\right]                         (4.7)

[Hint: Use Prob. 4.7 and Eq. 3.104.]

E _{\text {dip }}( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3( p \cdot \hat{ r }) \hat{ r }- p ]                                  (3.104)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
U=- p _{ 1 } \cdot E _{ 2 }, \text { but } E _{ 2 }=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}\left[3\left( p _{ 2 } \cdot \hat{ r }\right) \hat{ r }- p _{2}\right] . \text { So } U=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}\left[ p _{ 1 } \cdot p _{ 2 }-3\left( p _{ 1 } \cdot \hat { \mathbf { r } } \right)\left( p _{ 2 } \cdot \hat{ r }\right)\right]

Related Answered Questions