Question 3.1: Show that the midpoints of the sides of a quadrilateral are ...

Show that the midpoints of the sides of a quadrilateral are the vertices of a parallelogram.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The situation is sketched in Figure 1 . Using the fact that B, D, F, and H are midpoints, we have

\overrightarrow{B D}=\overrightarrow{B C}+\overrightarrow{C D}=\frac{1}{2} \overrightarrow{A C}+\frac{1}{2} \overrightarrow{C E}=\frac{1}{2}(\overrightarrow{A C}+\overrightarrow{C E})=\frac{1}{2} \overrightarrow{A E}

and

\overrightarrow{H F}=\overrightarrow{H G}+\overrightarrow{G F}=\frac{1}{2} \overrightarrow{A G}+\frac{1}{2} \overrightarrow{G E}=\frac{1}{2}(\overrightarrow{A G}+\overrightarrow{G E})=\frac{1}{2} \overrightarrow{A E}

Thus \overrightarrow{B D}=\overrightarrow{H F}. Similarly, \overrightarrow{H B}=\overrightarrow{F D}, so B D F H is a parallelogram.

Capture

Related Answered Questions

Here (\mathbf{u} \cdot \mathbf{v}) /|\mathb...
\operatorname{Proj}_{\mathbf{v}} \mathbf{u}...