Question 4.9: Small-signal analysis of a diode circuit The diode circuit s...

Small-signal analysis of a diode circuit The diode circuit shown in Fig. 4.18 has V_{ S }=10 V , V_{ m }=50 mV \text {, and } R_{ L }=1 k \Omega  . Use the Q-point found in Example 4.7 by mathematical method to determine the instantaneous diode voltage {v}_D . Assume an emission coefficient of n = 1.84.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

V_{ T }=25.8 mV , n=1.84, V_{ S }=10 V \text {, and } R_{ L }=1 k \Omega . The iterations of the Q-point analysis in Example 4.7 gave V_{ D }=0.7148 V \text { and } I_{ D }=9.284 mA . Using Eq. (4.27), we can find the AC resistance r_{ d } from

 

r_{ d }=R_{ D }=\frac{1}{g_{ d }}=\frac{n V_{ T }}{i_{ D }+I_{ S }} \approx \frac{n V_{ T }}{I_{ D }} \text { since } i_{ D }=I_{ D }, \text { and } I_{ D } \gg I_{ S }                                   (4.27)

 

r_{ d }=\frac{n V_{ T }}{I_{ D }}=\frac{1.84 \times 25.8 \times 10^{-3}}{\left(9.284 \times 10^{-3}\right)}=5.11 \Omega

 

The AC equivalent circuit is shown in Fig. 4.19. From the voltage divider rule, the AC diode voltage v_{ d } is given by

 

v_{ d }=\frac{r_{ d }}{r_{ d }+R_{ L }} V_{ m } \sin \omega t                                 (4.33)

 

=\frac{5.11}{5.11+1 k \Omega} 50 \times 10^{-3} \sin \omega t=0.2542 \times 10^{-3} \sin \omega t

 

Therefore, the instantaneous diode voltage v_{ D } is the sum of V_{ D } and v_{ d } . That is,

\begin{aligned}v_{ D } &=v_{ D }+v_{ d } \\&=0.7158+0.2542 \times 10^{-3} \sin \omega t V\end{aligned}

Screenshot 2021-10-18 185226

Related Answered Questions