Question 4.15: Small-signal analysis of a zener limiter and PSpice/SPICE ve...

Small-signal analysis of a zener limiter and PSpice/SPICE verification The parameters of the zener diodes in the symmetrical zener limiter of Fig. 4.31(a) are R_{ D }=50 \Omega, V_{ TD }=0.7 V , R_{ Z }=20 \Omega , and V_{ Z }=4.7 V \text { at } I_{ ZT }=20 mA . The value of current-limiting resistance R_{ s } is 1 kΩ. The input voltage to the limiter is AC rather than DC and is given by v_{ S }=v_{ s }=15 \sin (2000 \pi t) .

(a) Determine the instantaneous output voltage v_{ O } and the peak zener diode current I_{ p (\text { diode })} .

(b) Use PSpice/SPICE to plot the instantaneous output voltage v_{ O } . Assume PSpice/SPICE model parameters of zener diode D1N750:

IS=880.5E-18  N=1  CJO=175P  VJ=.75  BV=4.7  IBV=20.245M

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)  R_{ D }=50 \Omega, V_{ TD }=0.7 V , R_{ Z }=20 \Omega, V_{ Z }=4.7 V , R_{ s }=1 k \Omega \text {, and } v_{ S }=15 \sin (2000 \pi t) . Using Eq. (4.37), we have

 

v_{ Z }=v_{ ZO }+R_{ Z } i_{ Z }                                            (4.37)

 

 

V_{ ZO }=V_{ Z }-R_{ Z } I_{ ZT }=4.7 V -20 \Omega \times 20 mA =4.3 V

 

There are four possible intervals, depending on the value of v_{ S } . If 15 \sin 2000 \pi t=V_{ ZO }+V_{ TD }=5 , then

 

\begin{aligned}2000 \pi t &=\sin ^{-1}\left(\frac{5}{15}\right) \\&=0.34 rad\end{aligned}

 

Interval 1: This interval is valid for 0 \leq v_{ S } \leq\left(V_{ ZO }+V_{ TD }\right) .

 

\begin{aligned}&i_{ D }=0 \\&v_{ O }=v_{ s }=15 \sin (2000 \pi t) \quad \text { for } 0 \leq 2000 \pi t \leq 0.34 \text { and }(\pi-0.34) \leq 2000 \pi t \leq \pi\end{aligned}

 

Interval 2: This interval is valid for v_{ s } \geq\left(V_{ ZO }+V_{ TD }\right) . From Fig. 4.31(c), we can find the instantaneous diode current i_{ D } :

i_{ D }=\frac{v_{ S }}{R_{ s }+R_{ D }+R_{ Z }}-\frac{V_{ ZO }+V_{ TD }}{R_{ s }+R_{ D }+R_{ Z }}                                    (4.48)

 

=\frac{15 \sin (2000 \pi t)}{1 k \Omega+50 \Omega+20 \Omega}-\frac{(4.3+0.7) V }{1 k \Omega+50 \Omega+20 \Omega}=[14.02 \sin (2000 \pi t)-4.67] mA

 

The instantaneous output voltage v_{ O } is given by

 

v_{ O }=V_{ ZO }+V_{ TD }+\left(R_{ D }+R_{ Z }\right) i_{ D }                          (4.49)

 

Substituting for i_{ D } , we get

 

\begin{aligned}v_{ O } &=(4.3+0.7)+(50+20) \times[14.02 \sin (2000 \pi t)-4.67] \times 10^{-3} \\&=4.67+0.981 \sin (2000 \pi t) \quad \text { for } 0.34 \leq 2000 \pi t \leq(\pi-0.34)\end{aligned}

 

Interval 3: This interval is valid for 0 \geq v_{ S } \geq-\left(V_{ ZO }+V_{ TD }\right) .

 

\begin{aligned} &i_{ D }=0 \\ &v_{ O }=v_{ S }=-15 \sin (2000 \pi t) \quad \text { for }-0.34 \leq 2000 \pi t \leq 0 \text { and }-\pi \leq 2000 \pi t \leq(-\pi+0.34) \end{aligned}

 

Interval 4: This interval is valid for v_{ S } \leq-\left(V_{ ZO }+V_{ TD }\right) .

 

\begin{aligned}&i_{ D }=-[14.02 \sin (2000 \pi t)-4.67] mA \\&v_{ O }=-4.67-0.981 \sin (2000 \pi t) \quad \text { for }(-\pi+0.34) \leq 2000 \pi t \leq-0.34\end{aligned}

 

The peak diode current i_{ p (\text { diode })} occurs at 2000 \pi t=\pi / 2 . That is,

i_{ p (\text { diode })}=\left[14.02 \sin \left(\frac{\pi}{2}\right)-4.67\right] mA =14.02 mA -4.67 mA =9.35 mA

 

(b) The symmetrical zener limiter for PSpice simulation is shown in Fig. 4.32. The PSpice plot of instantaneous output voltage v_{ O } is shown in Fig. 4.33, which gives +5.435 V, compared to the expected value of 4.67 + 0.981 = 5.65 V (from the expression of v_{ O } for the interval 2).

Screenshot 2021-10-20 140720
Screenshot 2021-10-20 140720

Related Answered Questions