Solve Example 20.1, if the soil is clay having an unconfined compressive strength of 70 kN / m ^{2} and a unit weight of 17 kN / m ^{3}. Determine the maximum bending moment.
Solve Example 20.1, if the soil is clay having an unconfined compressive strength of 70 kN / m ^{2} and a unit weight of 17 kN / m ^{3}. Determine the maximum bending moment.
The pressure distribution is assumed as shown in Fig. Ex. 20.3.
For \phi_{u}=0, \bar{p}_{a}=\gamma H-q_{u}=17 \times 6-70=32 kN / m ^{2}
\begin{aligned}&z_{0}=\frac{q_{u}}{\gamma}=\frac{70}{17} m =4.12 m \\&P_{a}=\frac{1}{2} \bar{p}_{a}\left(H-z_{0}\right)=\frac{1}{2} \times 32 \times(6.0-4.12)=30 kN / m \text { of wall } \\&\bar{p}=2 q_{u}-\gamma H=2 \times 70-17 \times 6=38 kN / m ^{2} \\&\bar{p}^{\prime}=2 q_{u}+\gamma H=2 \times 70+17 \times 6=242 kN / m ^{2}\end{aligned}
\bar{y}=\frac{1}{3}\left(H-z_{0}\right)=\frac{1}{3}(6-4.12)=0.63 m
For the determination of h, equate the summation of all horizontal forces to zero, thus
P_{a}-\bar{p} \times D+\frac{1}{2}\left(\bar{p}+\bar{p}^{\prime}\right) h=0
or 30-38 \times D+\frac{1}{2}(38+242) h=0
Therefore h=\frac{3.8 D-3}{14}
For the determination of D, taking moments of all the forces about the base of the wall, we have
P_{a} \times(D+\bar{y})-\bar{p} \times \frac{D^{2}}{2}+\left(\bar{p}+\bar{p}^{\prime}\right) \times \frac{h}{2} \times \frac{h}{3}=0
or 30(D+0.63)-38 \times \frac{D^{2}}{2}+(38+242) \times \frac{h^{2}}{6}=0
Substituting for h we have,
3 D+1.89-1.9 D^{2}+4.7 \frac{3.8 D-3}{14}^{2}=0
Simplifying, we have
D^{2}-1.57 D+1.35=0
Solving D = 2.2 m; Increasing D by 40%, we have D = 1.4(2.2) = 3.1 m.
Maximum bending moment
From Eq. (20.20)
\bar{y}_{o}=\frac{P_{a}}{\bar{p}} (20.20a)
M_{\max }=P_{a}\left(\bar{y}_{o}+\bar{y}\right)-\frac{\overline{p y_{o}^{2}}}{2} (20.20b)
\begin{aligned}&M_{\max }=P_{a}\left(\bar{y}_{0}+\bar{y}\right)-\frac{\bar{p} \bar{y}_{0}^{2}}{2} \\&\begin{aligned}&\bar{y}_{0} =\frac{P_{a}}{\bar{p}}=\frac{30}{38}=0.79 m \\&\overline{ y }= 0.63 m \\M_{\max } &=30(0.79+0.63)-\frac{38 \times(0.79)^{2}}{2} \\&=42.6-11.9=30.7 kN – m / m \text { of wall }\end{aligned}\end{aligned}