Question 20.3: Solve Example 20.1, if the soil is clay having an unconfined...

Solve Example 20.1, if the soil is clay having an unconfined compressive strength of 70 kN / m ^{2} and a unit weight of 17 kN / m ^{3}. Determine the maximum bending moment.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The pressure distribution is assumed as shown in Fig. Ex. 20.3.

 

For \phi_{u}=0, \bar{p}_{a}=\gamma H-q_{u}=17 \times 6-70=32 kN / m ^{2}

 

\begin{aligned}&z_{0}=\frac{q_{u}}{\gamma}=\frac{70}{17} m =4.12 m \\&P_{a}=\frac{1}{2} \bar{p}_{a}\left(H-z_{0}\right)=\frac{1}{2} \times 32 \times(6.0-4.12)=30 kN / m \text { of wall } \\&\bar{p}=2 q_{u}-\gamma H=2 \times 70-17 \times 6=38 kN / m ^{2} \\&\bar{p}^{\prime}=2 q_{u}+\gamma H=2 \times 70+17 \times 6=242 kN / m ^{2}\end{aligned}

 

\bar{y}=\frac{1}{3}\left(H-z_{0}\right)=\frac{1}{3}(6-4.12)=0.63 m

 

For the determination of h, equate the summation of all horizontal forces to zero, thus

 

P_{a}-\bar{p} \times D+\frac{1}{2}\left(\bar{p}+\bar{p}^{\prime}\right) h=0

 

or 30-38 \times D+\frac{1}{2}(38+242) h=0

 

Therefore h=\frac{3.8 D-3}{14}

 

For the determination of D, taking moments of all the forces about the base of the wall, we have

 

P_{a} \times(D+\bar{y})-\bar{p} \times \frac{D^{2}}{2}+\left(\bar{p}+\bar{p}^{\prime}\right) \times \frac{h}{2} \times \frac{h}{3}=0

 

or 30(D+0.63)-38 \times \frac{D^{2}}{2}+(38+242) \times \frac{h^{2}}{6}=0

 

Substituting for h we have,

 

3 D+1.89-1.9 D^{2}+4.7 \frac{3.8 D-3}{14}^{2}=0

 

Simplifying, we have

 

D^{2}-1.57 D+1.35=0

 

Solving D = 2.2 m; Increasing D by 40%, we have D = 1.4(2.2) = 3.1 m.

 

Maximum bending moment

From Eq. (20.20)

 

\bar{y}_{o}=\frac{P_{a}}{\bar{p}} (20.20a)

 

M_{\max }=P_{a}\left(\bar{y}_{o}+\bar{y}\right)-\frac{\overline{p y_{o}^{2}}}{2} (20.20b)

 

\begin{aligned}&M_{\max }=P_{a}\left(\bar{y}_{0}+\bar{y}\right)-\frac{\bar{p} \bar{y}_{0}^{2}}{2} \\&\begin{aligned}&\bar{y}_{0} =\frac{P_{a}}{\bar{p}}=\frac{30}{38}=0.79 m \\&\overline{ y }= 0.63 m \\M_{\max } &=30(0.79+0.63)-\frac{38 \times(0.79)^{2}}{2} \\&=42.6-11.9=30.7 kN – m / m \text { of wall }\end{aligned}\end{aligned}
20.3

Related Answered Questions

Refer to Fig. Ex. 20.8 The following equations may...