Solve Example 20.7 by applying F_{s}=2 to the passive earth pressure.
Solve Example 20.7 by applying F_{s}=2 to the passive earth pressure.
Refer to Fig. Ex. 20.8
The following equations may be written
P_{p}^{\prime}=\frac{1}{2} \gamma_{b} K_{P} D^{2} \cdot \frac{1}{F_{s}}=\frac{1}{2} \times 8.19 \times 3 D^{2} \times \frac{1}{2}=6.14 D^{2}
p_{p}=\gamma_{b} K_{p} D=8.19 \times 3 D \approx 24.6 D
\frac{F G}{B C}=\frac{\alpha p_{p}}{p_{p}}=\frac{D-h}{D} \text { or } h=D(1-\alpha)
Area A B E F=\frac{D+h}{2} \quad \alpha p_{p}=\frac{D+h}{2} \quad \alpha \times 24.6 D
or 6.14 D^{2}=\alpha(D+h) \times 12.3 D
Substituting for h=D(1-\alpha) and simplifying
we have
2 \alpha^{2}-4 \alpha+1=0
Solving the equation, we get \alpha=0.3.
Now h=D(1-0.3)=0.7 D \text { and } A G=D-0.7 D=0.3 D
Taking moments of the area ABEF about the base of the pile, and assuming \alpha p_{p}=1 in Fig. Ex. 20.8 we have
\frac{1}{2}(1) \times 0.3 D \frac{1}{3} \times 0.3 D+0.7 D+(1) \times 0.7 D \times \frac{0.7 D}{2}
=\frac{1}{2}(1) 0.3 D+(1) \times 0.7 D \bar{y}_{p}
simplifying we have \bar{y}_{p}=0.44 D
\bar{y}_{p}=0.44 D
Now h_{4}=h_{3}+\left( D -\overline{y_{p}}\right)=4+(D-0.44 D)=4+0.56 D
From the active earth pressure diagram (Fig. Ex. 20.8) we have
\begin{aligned}\bar{p}_{1} &=\gamma_{d} h_{1} K_{A}=13 \times 2 \times \frac{1}{3}=8.67 kN / m ^{2} \\\bar{p}_{a} &=p_{1}+\gamma_{b}\left(h_{2}+D\right) K_{A}=8.67+\frac{8.19(3+D)}{3}=16.86+2.73 D \\P_{a} &=\frac{1}{2} p_{1} h_{1}+\frac{\left(\bar{p}_{1}+\bar{p}_{a}\right)}{2}\left(h_{2}+D\right) \\&=\frac{1}{2} \times 8.67 \times 2+\frac{8.67+16.86+2.73 D}{2}(3+D)=1.36 D^{2}+16.86 D+47\end{aligned}
Taking moments of active and passive forces about the tie rod, and simplifying , we have
(a) for moments due to active forces =0.89 D^{3}+13.7 D^{2}+66.7 D+104
(b) for moments due to passive forces =6.14 D^{2}(4+0.56 D)=24.56 D^{2}+3.44 D^{3}
Since the sum of the moments about the anchor rod should be zero, we have
0.89 D^{3}+13.7 D^{2}+66.7 D+104=24.56 D^{2}+3.44 D^{3}Simplifying we have
D^{3}+4.26 D^{2}-26.16 D-40.8=0By solving the equation we obtain D = 4.22 m with F_{s}=2.0
Force in the anchor rod
T_{a}=P_{a}-P_{p}^{\prime}where P_{a}=1.36 D^{2}+16.86 D+47=1.36 \times(4.22)^{2}+16.86 \times 4.25+47=143 kN
P_{p}^{\prime}=6.14 D^{2}=6.14 \times(4.22)^{2}=109 kN
Therefore T_{a}=143-109=34 kN/m length of wall.