Question 2.2.4: Solve the following system of equations by row reducing the ...

Solve the following system of equations by row reducing the augmented matrix to RREF.

x_{1} + x_{2} \ \ \ \ \ \ \ \ \ = -7 \\

2x_{1} + 4x_{2} + x_{3} = -16 \\

x_{1} + 2x_2 + x_{3} = 9

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Our first pivot is already a leading one, so we place zeros beneath it.

\left [ \begin{matrix} 1 & 1 & 0 \\ 2 & 4 & 1 \\ 1 & 2 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -16 \\ 9 \end{matrix} \right.\right ] \begin{matrix} \\ R_{2} – 2R_{1} \\ R_{3} – R_{1} \end{matrix} \thicksim \left [ \begin{matrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -2 \\ 16 \end{matrix} \right.\right ]

To make our next pivot a leading one, rather than introducing fractions, we use R_{2} – R_{3}.

\left [ \begin{matrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -2 \\ 16 \end{matrix} \right.\right ] \begin{matrix} \\ R_{2} – R_{3} \\ \\ \end{matrix} \thicksim \left [ \begin{matrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -18 \\ 16 \end{matrix} \right.\right ]

We now need to get zeros above and below this new leading one.

\left [ \begin{matrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -18 \\ 16 \end{matrix} \right.\right ] \begin{matrix} R_{1} – R_{2} \\ \\ R_{3} – R_{2} \end{matrix} \thicksim \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \left | \begin{matrix} 11 \\ -18 \\ 34 \end{matrix} \right.\right ]

The matrix is now in reduced row echelon form. The reduced row echelon form corresponds to the system x_{1} = 11, x_{2} = -18, x_{3} = 34. Hence, the solution is \vec{x} = \left [ \begin{matrix} 11 \\ -18 \\ 34 \end{matrix} \right ].

 

Related Answered Questions

We use Kirchhoff’s Voltage Law on each of the four...