Solve the following system of equations by row reducing the augmented matrix to RREF.
x_{1} + x_{2} \ \ \ \ \ \ \ \ \ = -7 \\
2x_{1} + 4x_{2} + x_{3} = -16 \\
x_{1} + 2x_2 + x_{3} = 9
Solve the following system of equations by row reducing the augmented matrix to RREF.
x_{1} + x_{2} \ \ \ \ \ \ \ \ \ = -7 \\
2x_{1} + 4x_{2} + x_{3} = -16 \\
x_{1} + 2x_2 + x_{3} = 9
Our first pivot is already a leading one, so we place zeros beneath it.
\left [ \begin{matrix} 1 & 1 & 0 \\ 2 & 4 & 1 \\ 1 & 2 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -16 \\ 9 \end{matrix} \right.\right ] \begin{matrix} \\ R_{2} – 2R_{1} \\ R_{3} – R_{1} \end{matrix} \thicksim \left [ \begin{matrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -2 \\ 16 \end{matrix} \right.\right ]
To make our next pivot a leading one, rather than introducing fractions, we use R_{2} – R_{3}.
\left [ \begin{matrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -2 \\ 16 \end{matrix} \right.\right ] \begin{matrix} \\ R_{2} – R_{3} \\ \\ \end{matrix} \thicksim \left [ \begin{matrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -18 \\ 16 \end{matrix} \right.\right ]
We now need to get zeros above and below this new leading one.
\left [ \begin{matrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{matrix} \left | \begin{matrix} -7 \\ -18 \\ 16 \end{matrix} \right.\right ] \begin{matrix} R_{1} – R_{2} \\ \\ R_{3} – R_{2} \end{matrix} \thicksim \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \left | \begin{matrix} 11 \\ -18 \\ 34 \end{matrix} \right.\right ]
The matrix is now in reduced row echelon form. The reduced row echelon form corresponds to the system x_{1} = 11, x_{2} = -18, x_{3} = 34. Hence, the solution is \vec{x} = \left [ \begin{matrix} 11 \\ -18 \\ 34 \end{matrix} \right ].