Solve the following system:
\begin{aligned}&x^{\prime}=4 x-y+t^{2} \\&y^{\prime}=x+2 y+3 t\end{aligned}\quad\quad\quad\quad\quad (12)Solve the following system:
\begin{aligned}&x^{\prime}=4 x-y+t^{2} \\&y^{\prime}=x+2 y+3 t\end{aligned}\quad\quad\quad\quad\quad (12)Proceeding as before, we obtain
\begin{aligned}x^{\prime \prime} &=4 x^{\prime}-y^{\prime}+2 t=4 x^{\prime}-\overbrace{(x+2 y+3 t)}^{y^{\prime}}+2 t \\&=4 x^{\prime}-x-2 y-t\end{aligned}From the first equation of (12),-y=x^{\prime}-4 x-t^{2}, so -2 y=2 x^{\prime}-8 x-2 t^{2} and
x^{\prime \prime}=4 x^{\prime}-x+\left(2 x^{\prime}-8 x-2 t^{2}\right)-tor, simplifying,
x^{\prime \prime}-6 x^{\prime}+9 x=-2 t^{2}-t .\quad\quad\quad\quad\quad (13)The associated homogeneous equation is
x^{\prime \prime}-6 x^{\prime}+9 x=0with characteristic equation
0=\lambda^{2}-6 \lambda+9=(\lambda-3)^{2}.
Thus the solution to the homogeneous equation is x(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}. Using the method of undetermined coefficients (Section 11.10), we obtain the particular solution
-\frac{2}{9} t^{2}-\frac{11}{27} t-\frac{2}{9}.
Hence the general solution to equation (13) is
x(t)=c_{1} e^{3 t}+c_{2} t e^{3 x}-\frac{2}{9} t^{2}-\frac{11}{27} t-\frac{2}{9}.
Also,
x^{\prime}(t)=3 c_{1} e^{3 t}+3 c_{2} t e^{3 t}+c_{2} e^{3 t}-\frac{4}{9} t-\frac{11}{27}.
From the first equation in (12),
y(t)=4 x-x^{\prime}+t^{2},and we obtain
y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}-c_{2} e^{3 t}+\frac{1}{9} t^{2}-\frac{32}{27} t-\frac{13}{27}.