Solve the initial value problem
x^{\prime \prime}+x=8 \sin t, \quad x(0)=3, \quad x^{\prime}(0)=1.
Solve the initial value problem
x^{\prime \prime}+x=8 \sin t, \quad x(0)=3, \quad x^{\prime}(0)=1.
Using the substitution x_{1}=x, x_{2}=x^{\prime}, we can write this in matrix form:
\left(\begin{array}{l}x_{1} \\x_{2}\end{array}\right)^{\prime}=\left(\begin{array}{rr}0 & 1 \\-1 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\x_{2}\end{array}\right)+\left(\begin{array}{c}0 \\8 \sin t\end{array}\right)The associated homogeneous system has the principal matrix solution
\Psi(t)=\left(\begin{array}{rr}\cos t & \sin t \\-\sin t & \cos t\end{array}\right)Then
\Psi^{-1}(t)=\left(\begin{array}{rr}\cos t & -\sin t \\\sin t & \cos t\end{array}\right)and
\begin{aligned}\int_{0}^{t} \Psi^{-1}(s) \mathbf{f}(s) d s &=\int_{0}^{t}\left(\begin{array}{cc}\cos s & -\sin s \\\sin s & \cos s\end{array}\right)\left(\begin{array}{c}0 \\8 \sin s\end{array}\right) d s \\&=\int_{0}^{t}\left(\begin{array}{c}-8 \sin ^{2} s \\8 \sin s \cos s\end{array}\right) d s=\left(\begin{array}{c}-4 t+4 \sin t \cos t \\4 \sin ^{2} t\end{array}\right)\end{aligned}Since the solution \varphi(t) satisfies the initial conditions
\varphi(0)=\left(\begin{array}{l}3 \\1\end{array}\right)we obtain from equation (14)
\varphi(t)=\Psi(t) \mathbf{x}_{0}+\Psi(t) \int_{t_{0}}^{t} \Psi^{-1}(s) \mathbf{f}(s) d s\begin{aligned}\varphi(t) &=\left(\begin{array}{rr}\cos t & \sin t \\-\sin t & \cos t\end{array}\right)\left(\begin{array}{l}3 \\1\end{array}\right)+\left(\begin{array}{rc}\cos t & \sin t \\-\sin t & \cos t\end{array}\right)\left(\begin{array}{c}-4 t+4 \sin t \cos t \\4 \sin ^{2} t\end{array}\right) \\&=\left(\begin{array}{c}-4 t \cos t+5 \sin t+3 \cos t \\4 t \sin t-3 \sin t+\cos t\end{array}\right)\end{aligned}
Here we have used the identity
\sin ^{3} t+\cos ^{2} t \sin t=\sin t\left(\sin ^{2} t+\cos ^{2} t\right)=\sin t.
Thus, x(t)=-4 t \cos t+5 \sin t+3 \cos t is the solution to the problem.