Question 12.7.2: Solve the initial value problem x" + x = 8 sin t, x(0) = 3, ...

Solve the initial value problem

x^{\prime \prime}+x=8 \sin t, \quad x(0)=3, \quad x^{\prime}(0)=1.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using the substitution x_{1}=x, x_{2}=x^{\prime}, we can write this in matrix form:

\left(\begin{array}{l}x_{1} \\x_{2}\end{array}\right)^{\prime}=\left(\begin{array}{rr}0 & 1 \\-1 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\x_{2}\end{array}\right)+\left(\begin{array}{c}0 \\8 \sin t\end{array}\right)

The associated homogeneous system has the principal matrix solution

\Psi(t)=\left(\begin{array}{rr}\cos t & \sin t \\-\sin t & \cos t\end{array}\right)

Then

\Psi^{-1}(t)=\left(\begin{array}{rr}\cos t & -\sin t \\\sin t & \cos t\end{array}\right)

and

\begin{aligned}\int_{0}^{t} \Psi^{-1}(s) \mathbf{f}(s) d s &=\int_{0}^{t}\left(\begin{array}{cc}\cos s & -\sin s \\\sin s & \cos s\end{array}\right)\left(\begin{array}{c}0 \\8 \sin s\end{array}\right) d s \\&=\int_{0}^{t}\left(\begin{array}{c}-8 \sin ^{2} s \\8 \sin s \cos s\end{array}\right) d s=\left(\begin{array}{c}-4 t+4 \sin t \cos t \\4 \sin ^{2} t\end{array}\right)\end{aligned}

Since the solution \varphi(t) satisfies the initial conditions

\varphi(0)=\left(\begin{array}{l}3 \\1\end{array}\right)

we obtain from equation (14)

\varphi(t)=\Psi(t) \mathbf{x}_{0}+\Psi(t) \int_{t_{0}}^{t} \Psi^{-1}(s) \mathbf{f}(s) d s

 

\begin{aligned}\varphi(t) &=\left(\begin{array}{rr}\cos t & \sin t \\-\sin t & \cos t\end{array}\right)\left(\begin{array}{l}3 \\1\end{array}\right)+\left(\begin{array}{rc}\cos t & \sin t \\-\sin t & \cos t\end{array}\right)\left(\begin{array}{c}-4 t+4 \sin t \cos t \\4 \sin ^{2} t\end{array}\right) \\&=\left(\begin{array}{c}-4 t \cos t+5 \sin t+3 \cos t \\4 t \sin t-3 \sin t+\cos t\end{array}\right)\end{aligned}

Here we have used the identity

\sin ^{3} t+\cos ^{2} t \sin t=\sin t\left(\sin ^{2} t+\cos ^{2} t\right)=\sin t.

Thus, x(t)=-4 t \cos t+5 \sin t+3 \cos t is the solution to the problem.

Related Answered Questions

Differentiating the first equation and substitutin...