Solve the problem in Ex. 17.11 by the direct method.
Given: E I=52.6 \times 10^{4} kN - m ^{2}, d=80 cm , \gamma=17.5 kN / m ^{3}, e=5 m , L=9 m , c=60 kN / m ^{2} and P_{t}=80 kN.
Solve the problem in Ex. 17.11 by the direct method.
Given: E I=52.6 \times 10^{4} kN - m ^{2}, d=80 cm , \gamma=17.5 kN / m ^{3}, e=5 m , L=9 m , c=60 kN / m ^{2} and P_{t}=80 kN.
Groundline deflection
From Eq. (16.30 ) for piers in clay
n_{h}=\frac{125 c^{1.5} \sqrt{E I \gamma d} /(1+e / d)^{1.5}}{P_{e}^{1.5}} (16.30)
n_{h}=\frac{125 c^{1.5} \sqrt{E I \gamma d}}{1+\frac{e}{d}^{1.5} \times P_{e}^{1.5}}
Substituting and simplifying
n_{h}=\frac{125 \times 60^{1.5} \sqrt{52.6 \times 10^{4} \times 17.5 \times 0.8}}{1+\frac{5}{0.8}^{1.5} \times P_{e}^{1.5}}=\frac{808 \times 10^{4}}{P_{e}^{1.5}} kN / m ^{3} (a)
Step 1
Assume P_{e}=P_{t}=80 kN,
From Eq. (a), n_{h}=11,285 kN / m ^{3} and
T=\frac{E I}{n_{h}}^{0.2}=\frac{52.6 \times 10^{4}}{11,285}^{0.2}=2.16 m
Step 2
From Eq. (16.22) P_{e}=P_{t} \times 1+0.67 \frac{e}{T}=801+0.67 \times \frac{5}{2.16}=204 kN
P_{e}=P_{t}\left(1+0.67 \frac{e}{T}\right) (16.22)
FromEq. (a), n_{h}=2772 kN / m ^{3} \text {, hence } T=2.86 m
Step 3
Continue the above process till convergence is reached. The final values are
P_{e}=177 kN , n_{h}=3410 kN / m ^{3} \text { and } T=2.74 m
For P_{e}=190 kN \text {, we have } n_{h}=8,309 kN / m ^{3} \text { and } T=2.29 m
Step 4
FromEq. (17.46)
y_{t}(\text { combined })=2.43 \frac{P_{t} T^{3}}{E I}+1.62 \frac{M_{t} T^{2}}{E I} (17.46)
y_{t}=\frac{2.43 \times 177 \times(2.74)^{3}}{52.6 \times 10^{4}} \times 1000=16.8 mm
By Duncan et al, method y_{t}=9.6 mm
Maximum moment from Eq. (16.12)
V=\left[P_{t}\right] A_{v}+\left[\frac{M_{i}}{T}\right] B_{v} (6.12)
M=\left[P_{t} T\right] A_{m}+\left[M_{t}\right] B_{m}=[80 \times 2.74] A_{m}+[400] B_{m}=219.2 A_{m}+400 B_{m}
Depth x/T = Z | A_{m} | B_{m} | M_{1} | M_{1} | M (kN-m) |
0 | 0 | 1 | 0 | 400 | 400 |
0.4 | 0.379 | 0.99 | 83 | 396 | 479 |
0.5 | 0.46 | 0.98 | 101 | 392 | 493 |
0.6 | 0.53 | 0.96 | 116 | 384 | 500 |
0.7 | 0.6 | 0.94 | 132 | 376 | 508 (max) |
0.8 | 0.65 | 0.91 | 142 | 364 | 506 |
The maximum bending moment occurs at x/T=0.1 or x=0.7 \times 2.74=1.91 m (6.26 ft). As per Duncan et al., method M(max) = 470.5 kN-m. This occurs at a depth of 1.3 m. |