Question 17.12: Solve the problem in Ex. 17.11 by the direct method. Given: ...

Solve the problem in Ex. 17.11 by the direct method.

Given: E I=52.6 \times 10^{4} kN - m ^{2}, d=80 cm , \gamma=17.5 kN / m ^{3}, e=5 m , L=9 m , c=60 kN / m ^{2} and P_{t}=80 kN.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Groundline deflection

From Eq. (16.30 ) for piers in clay

 

n_{h}=\frac{125 c^{1.5} \sqrt{E I \gamma d} /(1+e / d)^{1.5}}{P_{e}^{1.5}} (16.30)

 

n_{h}=\frac{125 c^{1.5} \sqrt{E I \gamma d}}{1+\frac{e}{d}^{1.5} \times P_{e}^{1.5}}

 

Substituting and simplifying

 

n_{h}=\frac{125 \times 60^{1.5} \sqrt{52.6 \times 10^{4} \times 17.5 \times 0.8}}{1+\frac{5}{0.8}^{1.5} \times P_{e}^{1.5}}=\frac{808 \times 10^{4}}{P_{e}^{1.5}} kN / m ^{3} (a)

 

Step 1

 

Assume P_{e}=P_{t}=80 kN,

 

From Eq. (a), n_{h}=11,285 kN / m ^{3} and

 

T=\frac{E I}{n_{h}}^{0.2}=\frac{52.6 \times 10^{4}}{11,285}^{0.2}=2.16 m

 

Step 2

 

From Eq. (16.22) P_{e}=P_{t} \times 1+0.67 \frac{e}{T}=801+0.67 \times \frac{5}{2.16}=204 kN

 

P_{e}=P_{t}\left(1+0.67 \frac{e}{T}\right) (16.22)

 

FromEq. (a), n_{h}=2772 kN / m ^{3} \text {, hence } T=2.86 m

 

Step 3

 

Continue the above process till convergence is reached. The final values are

 

P_{e}=177 kN , n_{h}=3410 kN / m ^{3} \text { and } T=2.74 m

 

For P_{e}=190 kN \text {, we have } n_{h}=8,309 kN / m ^{3} \text { and } T=2.29 m

 

Step 4

 

FromEq. (17.46)

 

y_{t}(\text { combined })=2.43 \frac{P_{t} T^{3}}{E I}+1.62 \frac{M_{t} T^{2}}{E I} (17.46)

 

y_{t}=\frac{2.43 \times 177 \times(2.74)^{3}}{52.6 \times 10^{4}} \times 1000=16.8 mm

 

By Duncan et al, method y_{t}=9.6 mm

 

Maximum moment from Eq. (16.12)

 

V=\left[P_{t}\right] A_{v}+\left[\frac{M_{i}}{T}\right] B_{v} (6.12)

 

M=\left[P_{t} T\right] A_{m}+\left[M_{t}\right] B_{m}=[80 \times 2.74] A_{m}+[400] B_{m}=219.2 A_{m}+400 B_{m}

 

Depth x/T = Z A_{m} B_{m} M_{1} M_{1} M (kN-m)
0 0 1 0 400 400
0.4 0.379 0.99 83 396 479
0.5 0.46 0.98 101 392 493
0.6 0.53 0.96 116 384 500
0.7 0.6 0.94 132 376 508 (max)
0.8 0.65 0.91 142 364 506
The maximum bending moment occurs at x/T=0.1 or x=0.7 \times 2.74=1.91 m (6.26 ft). As per Duncan et al., method M(max) = 470.5 kN-m. This occurs at a depth of 1.3 m.

Related Answered Questions