Species Fugacity Calculation Using the Peng-Robinson Equation of State
Compute the fugacities of ethane and n-butane in an equimolar mixture at 373.15 K and 1, 10, and 15 bar using the Peng-Robinson equation of state.
Species Fugacity Calculation Using the Peng-Robinson Equation of State
Compute the fugacities of ethane and n-butane in an equimolar mixture at 373.15 K and 1, 10, and 15 bar using the Peng-Robinson equation of state.
Using the computer programs in Appendix B on the website for this book or Aspen Plus R[ltaex]^R[/latex] and from Table 9.4-1, with k_{ ET – BU }=0.010, the results below are obtained.
P | Z | \bar{f}_{ ET }\left(373.15, P, y_{ ET }=0.5\right) | \bar{f}_{ BU }\left(373.15, P, y_{ BU }=0.5\right) |
1 bar | 0.991 | 0.498 bar | 0.493 bar |
10 bar | 0.910 | 4.836 bar | 4.333 bar |
15 bar | 0.861 | 7.143 bar | 6.024 bar |
Comment
These results are similar to those obtained using either the Lewis-Randall rule or the virial equation of state. However, greater differences between the methods occur for gases as the pressure is increased. At higher pressures the results from the Peng-Robinson equation of state are expected to be the most accurate.
Table 9.4-1 Binary Interaction Parameters k_{12} for the Peng-Robinson Equation of State* | ||||||||||||||||||
C _{2} H _{4} | C _{2} H _{6} | C _{3} H _{6} | C _{3} H _{8} | i- C _{4} H _{10} | n- C _{4} H _{10} | i- C _{5} H _{12} | n- C _{6} H _{14} | C _{6} H _{6} | c- C _{6} H _{12} | n- C _{7} H _{16} | n- C _{8} H _{18} | n- C _{10} H _{22} | N _{2} | CO | CO _{2} | SO _{2} | H _{2} S | |
CH _{4} | 0.022 | -0.003 | 0.033 | 0.016 | 0.026 | 0.019 | 0.026 | 0.04 | 0.055 | 0.039 | 0.035 | 0.05 | 0.049 | 0.03 | 0.03 | 0.09 | 0.136 | 0.08 |
C _{2} H _{4} | 0.01 | 0.092 | 0.031 | 0.014 | 0.025 | 0.086 | -0.022 | 0.056 | ||||||||||
C _{2} H _{6} | 0.089 | 0.001 | -0.007 | 0.01 | 0.008 | -0.04 | 0.042 | 0.018 | 0.007 | 0.019 | 0.014 | 0.044 | 0.026 | 0.13 | 0.086 | |||
C _{3} H _{6} | 0.007 | -0.014 | 0.09 | 0.026 | 0.093 | 0.08 | ||||||||||||
C _{3} H _{8} | -0.007 | 0.003 | 0.027 | 0.001 | 0.023 | 0.006 | 0 | 0 | 0.078 | 0.03 | 0.12 | 0.08 | ||||||
i- C _{4} H _{10} | 0 | 0.1 | 0.04 | 0.13 | 0.047 | |||||||||||||
n- C _{4} H _{10} | 0.017 | -0.006 | 0.003 | 0.007 | 0.008 | 0.087 | 0.04 | 0.135 | 0.07 | |||||||||
i- C _{5} H _{12} | 0.06 | 0.018 | 0.004 | 0.092 | 0.04 | 0.121 | 0.06 | |||||||||||
n- C _{5} H _{12} | 0.01 | -0.004 | 0.007 | 0 | 0.1 | 0.04 | 0.125 | 0.063 | ||||||||||
n- C _{6} H _{14} | 0.013 | -0.008 | 0.15 | 0.04 | 0.11 | 0.06 | ||||||||||||
C _{6} H _{6} | 0.001 | 0.003 | 0.1 | 0.164 | 0.11 | 0.077 | 0.015 | |||||||||||
c- C _{6} H _{12} | 0.14 | 0.1 | 0.105 | |||||||||||||||
n- C _{7} H _{16} | 0 | 0.1 | 0.04 | 0.1 | 0.06 | |||||||||||||
n- C _{8} H _{18} | 0.1 | 0.04 | 0.12 | 0.06 | ||||||||||||||
n- C _{10} H _{22} | 0.11 | 0.04 | 0.114 | 0.033 | ||||||||||||||
N _{2} | 0.012 | -0.02 | 0.08 | 0.17 | ||||||||||||||
CO | 0.03 | 0.054 | ||||||||||||||||
CO _{2} | 0.136 | 0.097 | ||||||||||||||||
SO _{2} | ||||||||||||||||||
H _{2} S | ||||||||||||||||||
*Obtained from data in “Vapor-Liquid Equilibria for Mixtures of Low-Boiling Substances,” by H. Knapp, R. D¨oring, L. Oellrich, U. Pl¨ocker, and J. M. Prausnitz, DECHEMA Chemistry Data Series, Vol. VI, Frankfurt/Main, 1982, and other sources. Blanks indicate no data are available from which the k12 could be evaluated. In such case use estimates from mixtures of similar compounds. |