Question 13.3: SUPERPOSITION OF GRAVITATIONAL FORCES Many stars belong to s...

SUPERPOSITION OF GRAVITATIONAL FORCES

Many stars belong to systems of two or more stars held together by their mutual gravitational attraction. Figure 13.5 shows a three-star system at an instant when the stars are at the vertices of a 45° right triangle. Find the total gravitational force exerted on the small star by the two large ones.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

IDENTIFY,  SET UP, and  EXECUTE:

We use the principle of superposition: The total force \vec{w} on the small star is the vector sum of the forces \vec{w}_1 and \vec{w}_2 due to each large star, as Fig. 13.5 shows.
We assume that the stars are spheres as in Fig. 13.2.

We first calculate the magnitudes F_1 and F_2 from Eq. (13.1) and then compute the vector sum by using components:

F_{\mathrm{g}}=\frac{G m_{1} m_{2}}{r^{2}}                      (13.1)

\begin{aligned}F_{1} &=\frac{\left[\begin{array}{c}\left(6.67 \times 10^{-11} \mathrm{~N}\cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right) \\\times\left(8.00 \times 10^{30}\mathrm{~kg}\right)\left(1.00 \times 10^{30} \mathrm{~kg}\right)\end{array}\right]}{\left(2.00 \times 10^{12} \mathrm{~m}\right)^{2}+\left(2.00 \times 10^{12} \mathrm{~m}\right)^{2}} \\&=6.67 \times 10^{25} \mathrm{~N} \\F_{2} &=\frac{\left[\begin{array}{c}\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right) \\\times\left(8.00 \times 10^{30} \mathrm{~kg}\right)\left(1.00 \times 10^{30} \mathrm{~kg}\right)\end{array}\right]}{\left(2.00 \times 10^{12} \mathrm{~m}\right)^{2}} \\&=1.33\times 10^{26} \mathrm{~N}\end{aligned}

The x- and y-components of these forces are

\begin{aligned}&F_{1 x}=\left(6.67 \times 10^{25} \mathrm{~N}\right)\left(\cos 45^{\circ}\right)=4.72 \times 10^{25} \mathrm{~N} \\&F_{1 y}=\left(6.67 \times 10^{25} \mathrm{~N}\right)\left(\sin 45^{\circ}\right)=4.72 \times 10^{25} \mathrm{~N} \\&F_{2 x}=1.33 \times10^{26} \mathrm{~N} \\&F_{2 y}=0\end{aligned}

The components of the total force \vec{w} on the small star are

\begin{aligned}&F_{x}=F_{1 x}+F_{2 x}=1.81 \times 10^{26} \mathrm{~N} \\&F_{y}=F_{1 y}+F_{2 y}=4.72 \times 10^{25} \mathrm{~N}\end{aligned}

The magnitude of \vec{w} and its angle θ (see Fig. 13.5) are

\begin{aligned}F &=\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{\left(1.81 \times 10^{26} \mathrm{~N}\right)^{2}+\left(4.72 \times 10^{25} \mathrm{~N}\right)^{2}} \\&=1.87 \times 10^{26}\mathrm{~N} \\\theta &=\arctan \frac{F_{y}}{F_{x}}=\arctan \frac{4.72 \times 10^{25}\mathrm{~N}}{1.81 \times 10^{26} \mathrm{~N}}=14.6^{\circ}\end{aligned}

 

EVALUATE: While the force magnitude F is tremendous, the magnitude of the resulting acceleration is not: a = F/m = \left(1.87 \times 10^{26} \mathrm{~N}\right) /\left(1.00 \times 10^{30} \mathrm{~kg}\right)=1.87 \times 10^{-4} \mathrm{~m} / \mathrm{s}^{2}. Furthermore, the force \vec{w} is not directed toward the center of mass of the two large stars.

2

Related Answered Questions