Question 3.47: Supersymmetry. Consider the two operators A = i p/√2m + W(x)...

Supersymmetry. Consider the two operators

\hat{A}=i \frac{\hat{p}}{\sqrt{2 m}}+W(x) \quad \text { and } \quad \hat{A}^{\dagger}=-i \frac{\hat{p}}{\sqrt{2 m}}+W(x) ,      (3.116)

for some function W(x). These may be multiplied in either order to construct two Hamiltonians:

\hat{H}_{1} \equiv \hat{A}^{\dagger} \hat{A}=\frac{\hat{p}^{2}}{2 m}+V_{1}(x) \quad \text { and } \quad \hat{H}_{2} \equiv \hat{A} \hat{A}^{\dagger}=\frac{\hat{p}^{2}}{2 m}+V_{2}(x) ;      (3.117)

V_1 and V_2 are called supersymmetric partner potentials. The energies and eigenstates of \hat{H}_{1} \text { and } \hat{H}_{2} are related in interesting ways.

(a) Find the potentials V_1(x) and V_2(x) , in terms of the superpotential, W(x).

(b) Show that if \psi_{n}^{(1)} is an eigenstate of \hat{H}_{1} with eigenvalue E_{n}^{(1)}, \text { then } \hat{A} \psi_{n}^{(1)} is an eigenstate of \hat{H}_{2} with eigenvalue Similarly, show that if \psi_{n}^{(2)}(x) is an eigenstate \hat{H}_{2} with eigenvalue  E_{n}^{(2)}, \text { then } \hat{A}^{\dagger} \psi_{n}^{(2)} is an eigenstate of \hat{H}_{1} with the same eigenvalue. The two Hamiltonians therefore have essentially identical spectra.

(c) One ordinarily chooses W(x) such that the ground state of \hat{H}_{1} satisfies

\hat{A} \psi_{0}^{(1)}(x)=0     (3.118).

and hence E_{0}^{(1)}=0 . Use this to find the superpotential W(x), in terms of the ground state wave function, \psi_{0}^{(1)}(x) . (The fact that \hat{A} annihilates \psi_{0}^{(1)} \text { means that } \hat{H}_{2} actually has one less eigenstate than \hat{H}_{1} , and is missing the eigenvalue E_{0}^{(1)} .

(d) Consider the Dirac delta function well,

V_{1}(x)=\frac{m \alpha^{2}}{2 \hbar^{2}}-\alpha \delta(x)       (3.119).

(the constant term, m \alpha^{2} / 2 \hbar^{2} , is included so that E_{0}^{(1)}=0 ). It has a single bound state (Equation 2.132)

\psi(x)=\frac{\sqrt{m \alpha}}{\hbar} e^{-m \alpha|x| / \hbar^{2}} ; \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}}               (2.132).

\psi_{0}^{(1)}(x)=\frac{\sqrt{m \alpha}}{\hbar} \exp \left[-\frac{m \alpha}{\hbar^{2}}|x|\right]         (3.120).

Use the results of parts (a) and (c), and Problem 2.23(b), to determine the superpotential W(x) and the partner potential V_2(x) . This partner potential is one that you will likely recognize, and while it has no bound states, the supersymmetry between these two systems explains the fact that their reflection and transmission coefficients are identical (see the last paragraph of Section 2.5.2).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

\hat{H}_{1}=\hat{A}^{\dagger} \hat{A}=\left(-i \frac{\hat{p}}{\sqrt{2 m}}+W\right)\left(i \frac{\hat{p}}{\sqrt{2 m}}+W\right)=\frac{\hat{p}^{2}}{2 m}+\frac{i}{\sqrt{2 m}}(W \hat{p}-\hat{p} W)+W^{2}=\frac{\hat{p}^{2}}{2 m}+V_{1} .

So V_{1}=W^{2}+\frac{i}{\sqrt{2 m}}[W, \hat{p}] . To calculate the commutator, use a test function f(x):

[W, \hat{p}] f(x)=W\left(-i \hbar \frac{d f}{d x}+i \hbar \frac{d}{d x}(W f)=i \hbar\left(-W \frac{d f}{d x}+\frac{d W}{d x} f+W \frac{d f}{d x}\right)=i \hbar \frac{d W}{d x} f \Rightarrow[W, \hat{p}]=i \hbar \frac{d W}{d x}\right. .

V_{1}=W^{2}-\frac{\hbar}{\sqrt{2 m}} \frac{d W}{d x} .

\hat{H}_{2}=\hat{A} \hat{A}^{\dagger}=\left(i \frac{\hat{p}}{\sqrt{2 m}}+W\right)\left(-i \frac{\hat{p}}{\sqrt{2 m}}+W\right)=\frac{\hat{p}^{2}}{2 m}-\frac{i}{\sqrt{2 m}}(W \hat{p}-\hat{p} W)+W^{2}=\frac{\hat{p}^{2}}{2 m}+V_{2} .

So V_{2}=W^{2}-\frac{i}{\sqrt{2 m}}[W, \hat{p}] , and hence V_{2}=W^{2}+\frac{\hbar}{\sqrt{2 m}} \frac{d W}{d x} .

(b)

\hat{H}_{1} \psi_{n}^{(1)}=E_{n}^{(1)} \psi_{n}^{(1)} \Rightarrow \hat{A}^{\dagger} \hat{A} \psi_{n}^{(1)}=E_{n}^{(1)} \psi_{n}^{(1)} \Rightarrow \hat{H}_{2}\left(\hat{A} \psi_{n}^{(1)}\right)=\hat{A} \hat{A}^{\dagger} \hat{A} \psi_{n}^{(1)}=\hat{A} E_{n}^{(1)} \psi_{n}^{(1)}=E_{n}^{(1)}\left(\hat{A} \psi_{n}^{(1)}\right) .

\hat{H}_{2} \psi_{n}^{(2)}=E_{n}^{(2)} \psi_{n}^{(2)} \Rightarrow \hat{A} \hat{A}^{\dagger} \psi_{n}^{(2)}=E_{n}^{(2)} \psi_{n}^{(2)} \Rightarrow \hat{H}_{1}\left(\hat{A}^{\dagger} \psi_{n}^{(2)}\right)=\hat{A}^{\dagger} \hat{A} \hat{A}^{\dagger} \psi_{n}^{(2)}=\hat{A}^{\dagger} E_{n}^{(2)} \psi_{n}^{(2)}=E_{n}^{(2)}\left(\hat{A}^{\dagger} \psi_{n}^{(2)}\right) .

(c)

\hat{A} \psi_{0}^{(1)}(x)=0 \Rightarrow\left(\frac{\hbar}{\sqrt{2 m}} \frac{d}{d x}+W\right) \psi_{0}^{(1)}(x)=0 \Rightarrow W(x)=-\frac{\hbar}{\sqrt{2 m}} \frac{\left(d \psi_{0}^{(1)} / d x\right)}{\psi_{0}^{(1)}}=-\frac{\hbar}{\sqrt{2 m}} \frac{d}{d x}\left[\ln \left(\psi_{0}^{(1)}\right)\right] .

(d)

W(x)=-\frac{\hbar}{\sqrt{2 m}} \frac{d}{d x}\left[\ln \left(\frac{\sqrt{m \alpha}}{\hbar}\right)-\frac{m \alpha}{\hbar^{2}}|x|\right]=\frac{\hbar}{\sqrt{2 m}} \frac{m \alpha}{\hbar^{2}} \operatorname{sign}(x)= \sqrt{\frac{m}{2}} \frac{\alpha}{\hbar} \operatorname{sign}(x) .

V_{2}=W^{2}+\frac{\hbar}{\sqrt{2 m}} \frac{d W}{d x}=\frac{m \alpha^{2}}{2 \hbar^{2}}+\frac{\hbar}{\sqrt{2 m}} \sqrt{\frac{m}{2}} \frac{\alpha}{\hbar} \frac{d}{d x}(\operatorname{sign}(x))= \frac{m \alpha^{2}}{2 \hbar^{2}}+\alpha \delta(x) .

I used the fact that

\operatorname{sign}(x)=-1+2 \theta(x)= \begin{cases}-1, & (x<0) \\ +1, & (x>0)\end{cases} .

and d \theta / d x=\delta(x) (Problem 2.23(b)).

Related Answered Questions