\lambda=\frac{\hbar^{2}}{2 m a^{2}}(N+1)^{2}=(N+1)^{2} V_{0} \quad(\text { here } N=100) ;
\left.V_{j}=b V_{0} \sin \left(\frac{\pi x_{j}}{a}\right)=b V_{0} \sin \left(\frac{\pi j \Delta x}{a}\right)=b V_{0} \sin \left(\frac{\pi j}{N+1}\right) \quad \text { (here } b=500\right) ;
v_{j}=\frac{V_{j}}{\lambda}=\frac{b}{(N+1)^{2}} \sin \left(\frac{\pi j}{N+1}\right) .
Factoring out λ, the diagonal elements of H are
2+v_{j}=2+\frac{b}{(N+1)^{2}} \sin \left(\frac{\pi j}{N+1}\right)=2+\frac{500}{10201} \sin \left(\frac{\pi j}{101}\right) .
h =\text { Table }[\operatorname{If}[ i == j , 2+(500 / 10201) \sin [\pi j / 101], 0],\{ i , 100\},\{j, 100\}] .
k =\text { Table }[I f[i=j+1,-1,0],\{i, 100\},\{j, 100\}] .
m =\text { Table }[I f[i=j-1,-1,0],\{i, 100\},\{j, 100\}] .
p=\operatorname{Table}[h[[i, j]]+k[[i, j]]+m[[i, j]],\{i, 100\},\{j, 100\}] .
EIG = Eigenvalues[N[p]]
10 201 * EIG
{841 255., 41 158.1, 41 063.4, 40 968.8, 40 869.4, 40 758.8, 40 632., 40 486.7, 40 322.1,
40 138.4, 39 935.6, 39 714.1, 39 474., 39 215.7, 38 939.5, 38 645.5, 38 334.2,
38 005.7, 37 660.6, 37 299., 36 921.3, 36 528., 36 119.3, 35 695.8, 35 257.7,
34 805.6, 34 339.9, 33 860.9, 33 369.3, 32 865.4, 32 349.7, 31 822.8, 31 285.1,
30 737.3, 30 179.7, 29 613., 29 037.7, 28 454.3, 27 863.4, 27 265.6, 26 661.5,
26 051.7, 25 436.7, 24 817.1, 24 193.6, 23 566.7, 22 937., 22 305.2, 21 671.9,
21 037.6, 20 403.1, 19 768.8, 19 135.5, 18 503.7, 17 874.1, 17 247.2, 16 623.6,
16 004., 15 389., 14 779.2, 14 175.1, 13 577.3, 12 986.5, 12 403.1, 11 827.8,
11 261.1, 10 703.5, 10 155.6, 9617.98, 9091.08, 8575.44, 8071.55, 7579.91,
7100.98, 6635.24, 6183.13, 5745.1, 5321.57, 4912.95, 4519.64, 4142.02, 3780.47,
3435.34, 3106.97, 2795.68, 2501.8, 2225.62, 1967.43, 1727.51, 1506.15, 1303.63,
1120.24, 956.36, 812.457, 689.191, 590.237, 499.854, 476.163, 304.8, 304.66}.
So the lowest three energies are 304.66 V _{0}, 304.8 V _{0}, \text { and } 476.163 V _{0} . Notice that the ground state is almost degenerate-essentially we have two separated wells with a huge barrier in between them, and the particle can be either in the left one or in the right one (or the even and odd linear combinations thereof).
EVE = Eigenvectors[N[p]].
ListLinePlot[EVE[[100]], PlotRange → \left\{0,0.2\right\} ].
ListLinePlot[EVE[[99]], PlotRange → \left\{-.2,0.2\right\} ].
ListLinePlot[EVE[[98]], PlotRange → \left\{-.1,0.2\right\} ].
Notice that the central barrier pushes the wave function out to the wings.