Question 11.28: Suppose the (electrically neutral) yz plane carries a time-d...

Suppose the (electrically neutral) yz plane carries a time-dependent but uniform surface current K(t) \hat{ z }.

(a) Find the electric and magnetic fields at a height x above the plane if

(i) a constant current is turned on at t = 0:

K(t)= \begin{cases}0, & t \leq 0 ,\\ K_{0}, & t>0.\end{cases}

(ii) a linearly increasing current is turned on at t = 0:

K(t)= \begin{cases}0, & t \leq 0, \\ \alpha t, & t>0.\end{cases}

(b) Show that the retarded vector potential can be written in the form

A (x, t)=\frac{\mu_{0} c}{2} \hat{ z } \int_{0}^{\infty} K\left(t-\frac{x}{c}-u\right) d u,

and from this determine E and B.

(c) Show that the total power radiated per unit area of surface is

\frac{\mu_{0} c}{2}[K(t)]^{2}.

Explain what you mean by “radiation,” in this case, given that the source is not localize\text { d. }^{22}

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { (a) } A (x, t)=\frac{\mu_{0}}{4 \pi} \int \frac{ K \left(t_{r}\right)}{ ᴫ } d a

 

=\frac{\mu_{0} \hat{ Z }}{4 \pi} \int \frac{K\left(t_{r}\right)}{\sqrt{r^{2}+x^{2}}} 2 \pi r d r

 

=\frac{\mu_{0} \hat{ z }}{2} \int \frac{K\left(t-\sqrt{r^{2}+x^{2}} / c\right)}{\sqrt{r^{2}+x^{2}}} r d r.

The maximum r is given by t-\sqrt{r^{2}+x^{2}} / c=0;

r_{\max }=\sqrt{c^{2} t^{2}-x^{2}} (since K(t) = 0 for t < 0).

(i)

A (x, t)=\frac{\mu_{0} K_{0} \hat{ z }}{2} \int_{0}^{r_{m}} \frac{r}{\sqrt{r^{2}+x^{2}}} d r=\left.\frac{\mu_{0} K_{0} \hat{ z }}{2} \sqrt{r^{2}+x^{2}}\right|_{0} ^{r_{m}}=\frac{\mu_{0} K_{0} \hat{ z }}{2}\left(\sqrt{r_{m}^{2}-x^{2}}-x\right)=\frac{\mu_{0} K_{0}(c t-x)}{2} \hat{ z }.

E (x, t)=-\frac{\partial A }{\partial t}=\frac{\mu_{0} K_{0} c}{2} \hat{ z } , for ct > x, and 0, for ct < x.

B (x, t)= \nabla \times A =-\frac{\partial A_{z}}{\partial x} \hat{ y }=\frac{\mu_{0} K_{0}}{2} \hat{ y } , for ct > x, and 0, for ct < x.

(ii)

A (x, t)=\frac{\mu_{0} \alpha \hat{ z }}{2} \int_{0}^{r_{m}} \frac{\left(t-\sqrt{r^{2}+x^{2}} / c\right)}{\sqrt{r^{2}+x^{2}}} r d r=\frac{\mu_{0} \alpha \hat{ z }}{2}\left[t \int_{0}^{r_{m}} \frac{r}{\sqrt{r^{2}+x^{2}}} d r-\frac{1}{c} \int_{0}^{r_{m}} r d r\right]

 

=\frac{\mu_{0} \alpha \hat{ z }}{2}\left[t(c t-x)-\frac{1}{2 c}\left(c^{2} t^{2}-x^{2}\right)\right]=\frac{\mu_{0} \alpha \hat{ z }}{4 c}\left(x^{2}-2 c t x+c^{2} t^{2}\right)=\frac{\mu_{0} \alpha(x-c t)^{2}}{4 c} \hat{ z }.

E (x, t)=-\frac{\partial A }{\partial t}=\frac{\mu_{0} \alpha(x-c t)}{2} \hat{ z } , for ct > x, and 0, for ct < x.

B (x, t)= \nabla \times A =-\frac{\partial A_{z}}{\partial x} \hat{ y }=-\frac{\mu_{0} \alpha}{2 c}(x-c t) \hat{ y } , for ct > x, and 0, for ct < x.

\text { (b) Let } u \equiv \frac{1}{c}\left(\sqrt{r^{2}+x^{2}}-x\right), \text { so } d u=\frac{1}{c}\left[\frac{1}{2} \frac{1}{\sqrt{r^{2}+x^{2}}} 2 r d r\right]=\frac{1}{c} \frac{r}{\sqrt{r^{2}+x^{2}}} d r , and

t-\frac{\sqrt{r^{2}+x^{2}}}{c}=t-\frac{x}{c}-u, \text { and as } r: 0 \rightarrow \infty, u: 0 \rightarrow \infty . \text { Then } A (x, t)=\frac{\mu_{0} c \hat{ z }}{2} \int_{0}^{\infty} K\left(t-\frac{x}{c}-u\right) d u \text {. } . qed

E (x, t)=-\frac{\partial A }{\partial t}=-\frac{\mu_{0} c \hat{ z }}{2} \int_{0}^{\infty} \frac{\partial}{\partial t} K\left(t-\frac{x}{c}-u\right) d u . \quad \text { But } \frac{\partial}{\partial t} K\left(t-\frac{x}{c}-u\right)=-\frac{\partial}{\partial u} K\left(t-\frac{x}{c}-u\right).

=\frac{\mu_{0} c}{2} \hat{ z } \int_{0}^{\infty} \frac{\partial}{\partial u} K\left(t-\frac{x}{c}-u\right) d u=\left.\frac{\mu_{0} c}{2} \hat{ z }\left[K\left(t-\frac{x}{c}-u\right)\right]\right|_{0} ^{\infty}=-\frac{\mu_{0} c}{2}[K(t-x / c)-K(-\infty)] \hat{ z }

 

=-\frac{\mu_{0} c}{2} K(t-x / c) \hat{ z },[\text { if } K(-\infty)=0].

Note that (i) and (ii) are consistent with this result. Meanwhile

B (x, t)=-\frac{\partial A_{z}}{\partial x} \hat{ y }=-\frac{\mu_{0} c}{c} \hat{ y } \int_{0}^{\infty} \frac{\partial}{\partial x} K\left(t-\frac{x}{c}-u\right) d u . \text { But } \frac{\partial}{\partial x} K\left(t-\frac{x}{c}-u\right)=\frac{1}{c} \frac{\partial}{\partial u} K\left(t-\frac{x}{c}-u\right).

=-\frac{\mu_{0}}{2} \hat{ y } \int_{0}^{\infty} \frac{\partial}{\partial u} K\left(t-\frac{x}{c}-u\right) d u=-\left.\frac{\mu_{0}}{2} \hat{ y }\left[K\left(t-\frac{x}{c}-u\right)\right]\right|_{0} ^{\infty}=\frac{\mu_{0}}{2}[K(t-x / c)-K(-\infty)] \hat{ y }

 

=\frac{\mu_{0}}{2} K(t-x / c) \hat{ y },[\text { if } K(-\infty)=0].

S =\frac{1}{\mu_{0}}( E \times B )=\frac{1}{\mu_{0}}\left(\frac{\mu_{0} c}{2}\right)\left(\frac{\mu_{0}}{2}\right) K(t-x / c)[-\hat{ z } \times \hat{ y }]=\frac{\mu_{0} c}{4}[K(t-x / c)]^{2} \hat{ x }.

This is the power per unit area that reaches x at time t; it left the surface at time (t-x / c). Moreover, an equal amount of energy is radiated downward, so the total power leaving the surface at time t is \frac{\mu_{0} c}{2}[K(t)]^{2} .

11.28

Related Answered Questions