Question 5.26: Suppose we use delta function wells, instead of spikes (i.e....

Suppose we use delta function wells, instead of spikes (i.e. switch the sign of α in Equation 5.64). Analyze this case, constructing the analog to Figure 5.5. This requires no new calculation, for the positive energy solutions (except that β is now negative; use β = -1.5 for the graph), but you do need to work out the negative energy solutions (let \kappa \equiv \sqrt{-2 m E} / \hbar \text { and } z \equiv-\kappa a, \text { for } E<0 );  your graph will now extend to negative z). How many states are there in the first allowed band?

V(x)=\alpha \sum_{j=0}^{N-1} \delta(x-j a)                    (5.64).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Positive-energy solutions. These are the same as before, except that α (and hence also β) is now a negative number.

Negative-energy solutions. On 0 < x < a we have

\frac{d^{2} \psi}{d x^{2}}=\kappa^{2} \psi, \quad \text { where } \quad \kappa \equiv \frac{\sqrt{-2 m E}}{\hbar} \Rightarrow \psi(x)=A \sinh \kappa x+B \cosh \kappa x .

According to Bloch’s theorem the solution on -a < x < 0 is

\psi(x)=e^{-i q a}[A \sinh \kappa(x+a)+B \cosh \kappa(x+a)] .

Continuity at x = 0 ⇒

B=e^{-i q a}[A \sinh \kappa a+B \cosh \kappa a], \quad \text { or } \quad A \sinh \kappa a=B\left[e^{i q a}-\cosh \kappa a\right]         [\star] .

The discontinuity in ψ′ (Eq. 2.128)⇒

\kappa A-e^{-i q a} \kappa[A \cosh \kappa a+B \sinh \kappa a]=\frac{2 m \alpha}{\hbar^{2}} B, \text { or } A\left[1-e^{-i q a} \cosh \kappa a\right]=B\left[\frac{2 m \alpha}{\hbar^{2} \kappa}+e^{-i q a} \sinh \kappa a\right]               [\blacklozenge] .

\Delta\left(\frac{d \psi}{d x}\right)=-\frac{2 m \alpha}{\hbar^{2}} \psi(0)                (2.128).

Plugging F into \star and \blacklozenge cancelling B:

\left(e^{i q a}-\cosh \kappa a\right)\left(1-e^{-i q a} \cosh \kappa a\right)=\frac{2 m \alpha}{\hbar^{2} \kappa} \sinh \kappa a+e^{-i q a} \sinh ^{2} \kappa a .

e^{i q a}-2 \cosh \kappa a+e^{-i q a} \cosh ^{2} \kappa a-e^{-i q a} \sinh ^{2} \kappa a=\frac{2 m \alpha}{\hbar^{2} \kappa} \sinh \kappa a .

e^{i q a}+e^{-i q a}=2 \cosh \kappa a+\frac{2 m a}{\hbar^{2} \kappa} \sinh \kappa a , \cos q a=\cosh \kappa a+\frac{m \alpha}{\hbar^{2} \kappa} \sinh \kappa a .

This is the analog to Eq. 5.71. As before, we let \beta \equiv m \alpha a / \hbar^{2} (but remember it’s now a negative number), and this time we define z \equiv-\kappa a extending Eq. 5.72 to negative z, where it represents negative-energy solutions. In this region we define

\cos (q a)=\cos (k a)+\frac{m \alpha}{\hbar^{2} k} \sin (k a)           (5.71).

z \equiv k a, \quad \text { and } \quad \beta \equiv \frac{m \alpha a}{\hbar^{2}}                (5.72).

f(z)=\cosh z+\beta \frac{\sinh z}{z}             [\star \star] .

In the figure below I have plotted f(z) for β = -1.5, using Eq. 5.73 for positive z and \star \star for negative z. As before, allowed energies are restricted to the range -1 \leq f(z) \leq 1 , and occur at intersections of f(z) with the N horizontal lines \cos q a=\cos (2 \pi n / N a) \text {, with } n=0,1,2 \ldots N-1 . Evidently the first band (partly negative, and partly positive) contains N states, as do all the higher bands.

98

Related Answered Questions