Question 10.24: Suppose you take a plastic ring of radius a and glue charge ...

Suppose you take a plastic ring of radius a and glue charge on it, so that the line charge density is \lambda_{0}|\sin (\theta / 2)| . Then you spin the loop about its axis at an angular velocity ω. Find the (exact) scalar and vector potentials at the center of the ring. \left[\text { Answer: } A =\left(\mu_{0} \lambda_{0} \omega a / 3 \pi\right)\{\sin [\omega(t-a / c)] \hat{ x }-\cos [\omega(t-a / c)] \hat{ y }\}\right]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\lambda(\phi, t)=\lambda_{0}|\sin (\theta / 2)|, \text { where } \theta=\phi-\omega t . So the (retarded) scalar potential at the center is (Eq. 10.26)

V( r , t)=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left( r ^{\prime}, t_{r}\right)}{ᴫ} d \tau^{\prime}, \quad A ( r , t)=\frac{\mu_{0}}{4 \pi} \int \frac{ J \left( r ^{\prime}, t_{r}\right)}{ᴫ} d \tau^{\prime}                            (10.26)

V(t)=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda}{ᴫ} d l^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \frac{\lambda_{0}\left|\sin \left[\left(\phi-\omega t_{r}\right) / 2\right]\right|}{a} a d \phi

 

=\frac{\lambda_{0}}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \sin (\theta / 2) d \theta=\left.\frac{\lambda_{0}}{4 \pi \epsilon_{0}}[-2 \cos (\theta / 2)]\right|_{0} ^{2 \pi}

 

=\frac{\lambda_{0}}{4 \pi \epsilon_{0}}[2-(-2)]=\frac{\lambda_{0}}{\pi \epsilon_{0}}.

(Note: at fixed t_{r}, d \phi=d \theta , and it goes through one full cycle of  \phi \text { or } \theta .)

Meanwhile I (\phi, t)=\lambda v =\lambda_{0} \omega a|\sin [(\phi-\omega t) / 2]| \hat{ \phi } . From Eq. 10.26 (again)

A (t)=\frac{\mu_{0}}{4 \pi} \int \frac{ I }{ᴫ} d l^{\prime}=\frac{\mu_{0}}{4 \pi} \int_{0}^{2 \pi} \frac{\lambda_{0} \omega a\left|\sin \left[\left(\phi-\omega t_{r}\right) / 2\right]\right| \hat{\phi}}{a} a d \phi.

\text { But } t_{r}=t-a / c \text { is again constant, for the } \phi \text { integration, and } \hat{\phi}=-\sin \phi \hat{ x }+\cos \phi \hat{ y }.

=\frac{\mu_{0} \lambda_{0} \omega a}{4 \pi} \int_{0}^{2 \pi}\left|\sin \left[\left(\phi-\omega t_{r}\right) / 2\right]\right|(-\sin \phi \hat{ x }+\cos \phi \hat{ y }) d \phi \text {. Again, switch variables to } \theta=\phi-\omega t_{r},

\text { and integrate from } \theta=0 \text { to } \theta=2 \pi \text { (so we don't have to worry about the absolute value) }.

=\frac{\mu_{0} \lambda_{0} \omega a}{4 \pi} \int_{0}^{2 \pi} \sin (\theta / 2)\left[-\sin \left(\theta+\omega t_{r}\right) \hat{ x }+\cos \left(\theta+\omega t_{r}\right) \hat{ y }\right] d \theta . Now

\int_{0}^{2 \pi} \sin (\theta / 2) \sin \left(\theta+\omega t_{r}\right) d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left[\cos \left(\theta / 2+\omega t_{r}\right)-\cos \left(3 \theta / 2+\omega t_{r}\right)\right] d \theta

 

=\left.\frac{1}{2}\left[2 \sin \left(\theta / 2+\omega t_{r}\right)-\frac{2}{3} \sin \left(3 \theta / 2+\omega t_{r}\right)\right]\right|_{0} ^{2 \pi}

 

=\sin \left(\pi+\omega t_{r}\right)-\sin \left(\omega t_{r}\right)-\frac{1}{3} \sin \left(3 \pi+\omega t_{r}\right)+\frac{1}{3} \sin \left(\omega t_{r}\right)

 

=-2 \sin \left(\omega t_{r}\right)+\frac{2}{3} \sin \left(\omega t_{r}\right)=-\frac{4}{3} \sin \left(\omega t_{r}\right).

\int_{0}^{2 \pi} \sin (\theta / 2) \cos \left(\theta+\omega t_{r}\right) d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left[-\sin \left(\theta / 2+\omega t_{r}\right)+\sin \left(3 \theta / 2+\omega t_{r}\right)\right] d \theta

 

=\left.\frac{1}{2}\left[2 \cos \left(\theta / 2+\omega t_{r}\right)-\frac{2}{3} \cos \left(3 \theta / 2+\omega t_{r}\right)\right]\right|_{0} ^{2 \pi}

 

=\cos \left(\pi+\omega t_{r}\right)-\cos \left(\omega t_{r}\right)-\frac{1}{3} \cos \left(3 \pi+\omega t_{r}\right)+\frac{1}{3} \cos \left(\omega t_{r}\right)

 

=-2 \cos \left(\omega t_{r}\right)+\frac{2}{3} \cos \left(\omega t_{r}\right)=-\frac{4}{3} \cos \left(\omega t_{r}\right) . So

A (t)=\frac{\mu_{0} \lambda_{0} \omega a}{4 \pi}\left(\frac{4}{3}\right)\left[\sin \left(\omega t_{r}\right) \hat{ x }-\cos \left(\omega t_{r}\right) \hat{ y }\right]=\frac{\mu_{0} \lambda_{0} \omega a}{3 \pi}\{\sin [\omega(t-a / c)] \hat{ x }-\cos [\omega(t-a / c)] \hat{ y }\}.

10.14

Related Answered Questions