Suppose you toss 100 coins starting with 60 heads and 40 tails, and you get the most likely result, 50 heads and 50 tails. What is the change in entropy?
Strategy
Noting that the number of microstates is labeled W in Table 15.4
Macrostate | Number of microstates | |
Heads | Tails | (W) |
100 | 0 | 1 |
99 | 1 | 1.0 \times 10^{2} |
95 | 5 | 7.5 \times 10^{7} |
90 | 10 | 1.7 \times 10^{13} |
75 | 25 | 2.4 \times 10^{23} |
60 | 40 | 1.4 \times 10^{28} |
55 | 45 | 6.1 \times 10^{28} |
51 | 49 | 9.9 \times 10^{28} |
50 | 50 | 1.0 \times 10^{29} |
49 | 51 | 9.9 \times 10^{28} |
45 | 55 | 6.1 \times 10^{28} |
40 | 60 | 1.4 \times 10^{28} |
25 | 75 | 2.4 \times 10^{23} |
10 | 90 | 1.7 \times 10^{13} |
5 | 95 | 7.5 \times 10^{7} |
1 | 99 | 1.0 \times 10^{2} |
0 | 100 | 1 |
Total: 1.27 \times 10^{30} |
for the 100-coin toss, we can use \Delta S=S_{ f }-S_{ i }=k \ln W_{ f }-k \ln W_{ i } to calculate the change in entropy.