Question : The 0.5-lb particle is guided along the circular path using ...

¨The 0.5-lb particle is guided along the circular path using the slotted arm guide. If the arm has an angular velocity \dot{\theta}= 4 rad/s and an angular acceleration \ddot{\theta}= 8 rad/{s}^{2} at the instant \theta =30° determine the force of the guide on the particle. Motion occurs in the horizontal plane.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

r=2(0.5 \cos \theta)=1 \cos \theta\\
\dot{r}=-\sin \theta \dot{\theta}\\
\bar{r}=-\cos \theta \dot{\theta}^{2}-\sin \theta \ddot{\theta}\\
 At  \theta=30^{\circ}, \dot{\theta}=4 \mathrm{rad} / \mathrm{s}  and  \ddot{\theta}=8 \mathrm{rad} / \mathrm{s}^{2}\\
r=1 \cos 30^{\circ}=0.8660 \mathrm{ft}\\
\dot{r}=-\sin 30^{\circ}(4)=-2 \mathrm{ft} / \mathrm{s}\\
\ddot{r}=-\cos 30^{\circ}(4)^{2}-\sin 30^{\circ}(8)=-17.856 \mathrm{ft} / \mathrm{s}^{2}\\
a_{r}=\ddot{r}-\dot{r} \hat{\theta}^{2}=-17.856-0.8660(4)^{2}=-31.713 \mathrm{ft} / \mathrm{s}^{2}\\
a_{\theta}=\dot{r} \dot{\theta}+2 \dot{r} \dot{\theta}=0.8660(8)+2(-2)(4)=-9.072 \mathrm{ft} / \mathrm{s}^{2}\\
\nearrow +\Sigma F_{r}=m a_{r} ; \quad-N \cos 30^{\circ}=\frac{0.5}{32.2}(-31.713) \quad N=0.5686 \mathrm{lb}\\
+\nwarrow \Sigma F_{\theta}=m a_{\theta} ; \quad F-0.5686\sin30^{\circ}=\frac{0.5}{32.2}(-9.072)\\
F=0.143 lb

vvvvvvv1