Question 13.201: The 2-lb ball at A is suspended by an inextensible cord and ...

The 2-lb ball at A is suspended by an inextensible cord and given an initial horizontal velocity of \mathbf{ v }_{ 0 }. If l = 2 ft, { x }_{ B }= 0.3 \mathrm{\ ft} and { y }_{ B }= 0.4 \mathrm{\ ft} determine the initial velocity v so that the ball will enter in the basket. Hint: use a computer to solve the resulting set of equations.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let position 1 be at A. \quad\quad\nu_{1}=\nu_{0}

Let position 2 be the point described by the angle \theta where the path of the ball changes from circular to parabolic. At position 2 the tension Q in the cord is zero.

Relationship between \nu_{2} and \theta based on Q = 0. Draw the free body diagram.

+\swarrow \Sigma F=0:\quad Q+m g\sin\theta=m a_{n}={\frac{m \nu_{2}^{2}}{\ell}}

With Q=0, \quad\nu_{2}^{2}=g \ell \sin \theta \quad \text { or } \quad \nu_{2}=\sqrt{g \ell \sin \theta}    (1)

Relationship among \nu_{0}, \nu_{2}, and θ based on conservation of energy.

\begin{aligned}T_{1}+V_{1} & =T_{2}+V_{2} \\\frac{1}{2} m \nu_{0}^{2}-m g \ell & =\frac{1}{2} m \nu_{2}^{2}+m g \ell \sin \theta \\\nu_{0}^{2} & =\nu_{2}^{2}+2 g \ell(1+\sin \theta) & \text{(2)}\end{aligned}

x and y coordinates at position 2:

\begin{aligned}& x_{2}=\ell \cos \theta & \text{(3)}\\& y_{2}=\ell \sin \theta & \text{(4)}\end{aligned}

Let t_{2} be the time when the ball is in position 2 .

Motion on the parabolic path. The horizontal motion is

\begin{aligned}\dot{x} & =-\nu_{2} \sin \theta \\x & =x_{2}-\left(\nu_{2} \sin \theta\right)\left(t-t_{2}\right) & \text{(5)}\\\end{aligned}

At Point B,

\begin{aligned}& \quad\quad x =x_{B} \quad \text { and } \quad t=t_{B} . \quad \text { From Eq. (5), } \\&\left(t_{B}-t_{2}\right) =\frac{\ell \cos \theta-x_{B}}{\nu_{\theta} \sin \theta} & \text{(6)}\end{aligned}

Vertical motion: 

\begin{aligned}\dot{y} & =\nu_{2} \cos \theta-g\left(t-t_{2}\right) \\y & =y_{2}+\left(\nu_{2} \cos \theta\right)\left(t-t_{2}\right)-\frac{1}{2} g\left(t-t_{2}\right)^{2}\end{aligned}

At Point B,

y_{B}=\ell \sin \theta+\left(\nu_{2} \cos \theta\right)\left(t_{B}-t_{2}\right)-\frac{1}{2} g\left(t_{B}-t_{2}\right)^{2}    (7)

Data: \quad\ell=2 \mathrm{\ ft}, \quad x_{B}=0.3 \mathrm{\ ft}, \quad y_{B}=0.4 \mathrm{\ ft}, \quad g=32.2 \mathrm{\ ft} / \mathrm{s}^{2}

With the numerical data,

Eq. (1) becomes \quad\nu_{2}  =\sqrt{64.4 \sin \theta}       (1)′

Eq. (6) becomes \quad t_{B}-t_{2} =\frac{2 \cos \theta-0.3}{\nu_{2} \sin \theta}       (6)′

Eq. (7) becomes \quad  y_{B}=2 \sin \theta+\left(\nu_{2} \cos \theta\right)\left(t_{B}-t_{2}\right)-16.1\left(t_{B}-t_{2}\right)^{2}       (7)′

Method of solution. From a trial value of \theta, calculate \nu_{2} from Eq. (1)′, t_{B}-t_{2} from Eq. (6)’, and y_{B} from Eq. (7)’. Repeat until y_{B}=0.4 \mathrm{\ ft} as required.

Try \theta=30^{\circ}

\begin{aligned}\nu_{2} & =\sqrt{64.4 \sin 30^{\circ}}=5.6745 \mathrm{\ ft} / \mathrm{s} \\t_{B}-t_{2} & =\frac{2 \cos 30^{\circ}-0.3}{5.6745 \sin 30^{\circ}}=0.50473 \mathrm{~s} \\y_{B} & =2 \sin 30^{\circ}+\left(5.6745 \cos 30^{\circ}\right)(0.50473)-(16.1)(0.50473)^{2} \\& =-0.62116 \mathrm{\ ft}\end{aligned}

Try \theta=45^{\circ}.

\begin{aligned}\nu_{2} & =\sqrt{64.4 \sin 45^{\circ}}=6.7482 \\t_{B}-t_{2} & =\frac{2 \cos 45^{\circ}-0.3}{6.7482 \sin 45^{\circ}}=0.23351 \mathrm{~s} \\y_{B} & =2 \sin 45^{\circ}+\left(6.7482 \cos 45^{\circ}\right)(0.23351)-(16.1)(0.23351)^{2} \\& =1.65060 \mathrm{\ ft}\end{aligned}

Try \theta=37.5^{\circ}.

\begin{aligned}\nu_{2} & =\sqrt{64.4 \sin 37.5^{\circ}}=6.2613 \mathrm{\ ft} / \mathrm{s} \\t_{B}-t_{2} & =\frac{2 \cos 37.5^{\circ}-0.3}{6.2613 \sin 37.5^{\circ}}=0.33757 \mathrm{~s} \\y_{B} & =2 \sin 37.5^{\circ}+\left(6.2613 \cos 37.5^{\circ}\right)(0.33757)-(16.1)(0.33757)^{2} \\& =1.05972 \mathrm{\ ft}\end{aligned}

Let u=\theta-30^{\circ}. The following sets of data points have be determined:

\left(u, y_{B}\right)=\left(0^{\circ},-0.62114 \mathrm{\ ft}\right),\left(7.5^{\circ}, 1.05972 \mathrm{\ ft}\right),\left(15^{\circ}, 1.65060 \mathrm{\ ft}\right)

The quadratic curve fit of this data gives

y_{B}=-0.62114+0.29678 u-0.009688711 u^{2}

Setting \quad y_{B}=0.4 \mathrm{\ ft} gives the quadratic equation

-0.009688711 u^{2}+0.29678 u-1.02114=0

Solving for u, \quad u=3.95^{\circ} \text { and } 26.68^{\circ}

Rejecting the second value gives \quad\theta=30^{\circ}+u=33.95^{\circ}.

Try \theta=33.95^{\circ}.

\begin{aligned}& \nu_{2}=\sqrt{64.4 \sin 33.95^{\circ}}=5.997 \mathrm{\ ft} / \mathrm{s} \\& t_{B}-t_{2}=\frac{2 \cos 33.95^{\circ}-0.3}{5.9971 \sin 33.95^{\circ}}=0.40578 \mathrm{~s} \\& y_{B}=2 \sin 33.95^{\circ}+\left(5.997 \cos 33.95^{\circ}\right)(0.40578)-(16.1)(0.40578)^{2} \\&=0.48462 \mathrm{\ ft}\end{aligned}

The new quadratic curve-fit is based on the data points

\left(u, y_{B}\right)=\left(0^{\circ},-0.62114 \mathrm{\ ft}\right),\left(3.95^{\circ}, 0.48462 \mathrm{\ ft}\right),\left(7.5^{\circ}, 1.05972 \mathrm{\ ft}\right) .

The quadratic curve fit of this data is

y_{B}=-0.62114+0.342053907 u-0.015725232 u^{2}

Setting y_{B}=0.4 \mathrm{\ ft} gives

-0.015725232 u^{2}+0.342053907 u-1.02114=0

Solving for u,

u  =3.572^{\circ} \quad \theta=30^{\circ}+3.572^{\circ}=33.572^{\circ}

Try \theta=33.572^{\circ}.

\begin{aligned}\nu_{2} & =\sqrt{64.4 \sin 33.572^{\circ}}=5.9676 \mathrm{\ ft} / \mathrm{s} \\t_{B}-t_{2} & =\frac{2 \cos 33.572^{\circ}-0.3}{5.9676 \sin 33.572^{\circ}}=0.41406 \mathrm{~s} \\y_{B} & =2 \sin 33.572^{\circ}+\left(5.9676 \cos 33.572^{\circ}\right)(0.41406)-(16.1)(0.41406)^{2} \\& =0.40445 \mathrm{\ ft}\end{aligned}

which is close enough to 0.4 ft.

Substituting \theta=33.572^{\circ} and \nu_{2}=5.9676 \mathrm{\ ft} / \mathrm{s} into Eq. (2) along with other data gives

\begin{array}{r}\nu_{0}^{2}=(5.9676)^{2}+(2)(32.2)(2)\left(1+\sin 33.572^{\circ}\right)=235.64 \mathrm{\ ft}^{2} / \mathrm{s}^{2} \\\mathbf{v}_{0}=15.35 \mathrm{\ ft} / \mathrm{s} \longrightarrow\blacktriangleleft\end{array}

13.201.

Related Answered Questions