The 6061-T6 aluminum alloy solid shaft is fixed at one end but free at the other end. If the shaft has a diameter of 100 mm, determine its maximum allowable length L if it is subjected to the eccentric force P=80 kN.
The 6061-T6 aluminum alloy solid shaft is fixed at one end but free at the other end. If the shaft has a diameter of 100 mm, determine its maximum allowable length L if it is subjected to the eccentric force P=80 kN.
Section Properties.
A=\pi\left(0.05^{2}\right)=2.5\left(10^{-3}\right) \pi \mathrm{m}^{2} \\I=\frac{\pi}{4}\left(0.05^{4}\right)=1.5625\left(10^{-6}\right) \pi \mathrm{m}^{4} \\r=\sqrt{\frac{I}{A}}=\sqrt{\frac{1.5625\left(10^{-6}\right) \pi}{2.5\left(10^{-3}\right) \pi}}=0.025 \mathrm{~m} \\e=0.1 \mathrm{~m} \quad c=0.05 \mathrm{~m}For a column that is fixed at one end and free at the other, K=2. Thus,
K L=2 L
Buckling. The critical buckling load is P_{\mathrm{cr}}=80 \mathrm{kN}. Applying Euler’s equation,
P_{\mathrm{cr}}=\frac{\pi^{2} E I}{(K L)^{2}} \\80\left(10^{3}\right)=\frac{\pi^{2}\left[68.9\left(10^{9}\right)\right]\left[1.5625\left(10^{-6}\right) \pi\right]}{(2 L)^{2}} \\L=3.230 \mathrm{~m}Euler’s equation is valid only if \sigma_{\mathrm{cr}}<\sigma_{Y}
\sigma_{\mathrm{cr}}=\frac{P_{\mathrm{cr}}}{A}=\frac{80\left(10^{3}\right)}{2.5\left(10^{-3}\right) \pi}=10.19 \mathrm{MPa}<\sigma_{Y}=255 \mathrm{MPa}Yielding. Applying the secant formula,
\sigma_{\max }=\frac{P}{A}\left[1+\frac{e c}{r^{2}} \sec \left[\frac{K L}{2 r} \sqrt{\frac{P}{E A}}\right]\right]\\255\left(10^{6}\right)=\frac{80\left(10^{3}\right)}{2.5\left(10^{-3}\right) \pi}\left[1+\frac{0.1(0.05)}{0.025^{2}} \sec \left[\frac{2 L}{2(0.025)} \sqrt{\frac{80\left(10^{3}\right)}{68.9\left(10^{9}\right)\left[2.5\left(10^{-3}\right) \pi\right]}}\right]\right]\\\sec 0.4864 L=3.0043\\L=2.532 \mathrm{~m}=2.53 \mathrm{~m}\quad (controls)