Question 13.57:  The 6061-T6 aluminum alloy solid shaft is fixed at one end ...

The 6061-T6 aluminum alloy solid shaft is fixed at one end but free at the other end. If the shaft has a diameter of 100 mm, determine its maximum allowable length L if it is subjected to the eccentric force P=80 kN.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section Properties.

A=\pi\left(0.05^{2}\right)=2.5\left(10^{-3}\right) \pi \mathrm{m}^{2} \\I=\frac{\pi}{4}\left(0.05^{4}\right)=1.5625\left(10^{-6}\right) \pi \mathrm{m}^{4} \\r=\sqrt{\frac{I}{A}}=\sqrt{\frac{1.5625\left(10^{-6}\right) \pi}{2.5\left(10^{-3}\right) \pi}}=0.025 \mathrm{~m} \\e=0.1 \mathrm{~m} \quad c=0.05 \mathrm{~m}

For a column that is fixed at one end and free at the other, K=2. Thus,

K L=2 L

Buckling. The critical buckling load is P_{\mathrm{cr}}=80 \mathrm{kN}. Applying Euler’s equation,

P_{\mathrm{cr}}=\frac{\pi^{2} E I}{(K L)^{2}} \\80\left(10^{3}\right)=\frac{\pi^{2}\left[68.9\left(10^{9}\right)\right]\left[1.5625\left(10^{-6}\right) \pi\right]}{(2 L)^{2}} \\L=3.230 \mathrm{~m}

Euler’s equation is valid only if \sigma_{\mathrm{cr}}<\sigma_{Y}

\sigma_{\mathrm{cr}}=\frac{P_{\mathrm{cr}}}{A}=\frac{80\left(10^{3}\right)}{2.5\left(10^{-3}\right) \pi}=10.19 \mathrm{MPa}<\sigma_{Y}=255 \mathrm{MPa}

Yielding. Applying the secant formula,
\sigma_{\max }=\frac{P}{A}\left[1+\frac{e c}{r^{2}} \sec \left[\frac{K L}{2 r} \sqrt{\frac{P}{E A}}\right]\right]\\255\left(10^{6}\right)=\frac{80\left(10^{3}\right)}{2.5\left(10^{-3}\right) \pi}\left[1+\frac{0.1(0.05)}{0.025^{2}} \sec \left[\frac{2 L}{2(0.025)} \sqrt{\frac{80\left(10^{3}\right)}{68.9\left(10^{9}\right)\left[2.5\left(10^{-3}\right) \pi\right]}}\right]\right]\\\sec 0.4864 L=3.0043\\L=2.532 \mathrm{~m}=2.53 \mathrm{~m}\quad (controls)

Related Answered Questions