The ac bridge circuit of Fig. 9.85 is called a Wien bridge. It is used for measuring the frequency of a source. Show that when the bridge is balanced,
f=\frac { 1 }{ 2\pi \sqrt { { R }_{ 2 }{ R }_{ 4 }{ C }_{ 2 }{ C }_{ 4 } } }The ac bridge circuit of Fig. 9.85 is called a Wien bridge. It is used for measuring the frequency of a source. Show that when the bridge is balanced,
f=\frac { 1 }{ 2\pi \sqrt { { R }_{ 2 }{ R }_{ 4 }{ C }_{ 2 }{ C }_{ 4 } } }Let \quad {Z}_{1}=\mathrm{R}_{1}, \quad {Z}_{2}=\mathrm{R}_{2}+\frac{1}{\mathrm{j} \omega \mathrm{C}_{2}}, \quad {Z}_{3}=\mathrm{R}_{3}, and {Z}_{4}=\mathrm{R}_{4} \| \frac{1}{\mathrm{j} \omega \mathrm{C}_{4}}\\\\
{Z}_{4}=\frac{{R}_{4}}{j \omega {R}_{4} C_{4}+1}=\frac{-j {R}_{4}}{\omega R_{4} C_{4}-{j}}\\\\since {Z}_{4}=\frac{{Z}_{3}}{{Z}_{1}} {Z}_{2} \longrightarrow{Z}_{1} {Z}_{4}={Z}_{2} {Z}_{3}\\\\
\begin{array}{l}\frac{-\mathrm{jR}_{4} \mathrm{R}_{1}}{\omega \mathrm{R}_{4} \mathrm{C}_{4}-\mathrm{j}}=\mathrm{R}_{3}\left(\mathrm{R}_{2}-\frac{\mathrm{j}}{\omega \mathrm{C}_{2}}\right) \\\\\frac{-\mathrm{jR}_{4} \mathrm{R}_{1}\left(\omega \mathrm{R}_{4} \mathrm{C}_{4}+\mathrm{j}\right)}{\omega^{2} \mathrm{R}_{4}^{2} \mathrm{C}_{4}^{2}+1}=\mathrm{R}_{3} \mathrm{R}_{2}-\frac{\mathrm{jR}_{3}}{\omega \mathrm{C}_{2}}\\\end{array}Equating the real and imaginary components,
\frac{\mathrm{R}_{1} \mathrm{R}_{4}}{\omega^{2} \mathrm{R}_{4}^{2} \mathrm{C}_{4}^{2}+1}=\mathrm{R}_{2} \mathrm{R}_{3} (1)\\\\ \frac{\omega \mathrm{R}_{1} \mathrm{R}_{4}^{2} \mathrm{C}_{4}}{\omega^{2} \mathrm{R}_{4}^{2} \mathrm{C}_{4}^{2}+1}=\frac{\mathrm{R}_{3}}{\omega \mathrm{C}_{2}} (2)\\\\\\Dividing (1) by (2),
\begin{array}{l}\frac{1}{\omega \mathrm{R}_{4} \mathrm{C}_{4}}=\omega \mathrm{R}_{2} \mathrm{C}_{2} \\\\\omega^{2}=\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{R}_{4} \mathrm{C}_{4}} \\\\\omega=2 \pi \mathrm{f}=\frac{1}{\sqrt{\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{R}_{4} \mathrm{C}_{4}}} \\\\{f}=\frac{1}{2 \pi \sqrt{{R}_{2} {R}_{4} \mathrm{C}_{2} \mathrm{C}_{4}}}\end{array}