Question 9.85: The ac bridge circuit of Fig. 9.85 is called a Wien bridge. ...

The ac bridge circuit of Fig. 9.85 is called a Wien bridge. It is used for measuring the frequency of a source. Show that when the bridge is balanced,

f=\frac { 1 }{ 2\pi \sqrt { { R }_{ 2 }{ R }_{ 4 }{ C }_{ 2 }{ C }_{ 4 } } } 
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let \quad {Z}_{1}=\mathrm{R}_{1}, \quad {Z}_{2}=\mathrm{R}_{2}+\frac{1}{\mathrm{j} \omega \mathrm{C}_{2}}, \quad {Z}_{3}=\mathrm{R}_{3}, and {Z}_{4}=\mathrm{R}_{4} \| \frac{1}{\mathrm{j} \omega \mathrm{C}_{4}}\\\\

{Z}_{4}=\frac{{R}_{4}}{j \omega {R}_{4} C_{4}+1}=\frac{-j {R}_{4}}{\omega R_{4} C_{4}-{j}}\\\\

since {Z}_{4}=\frac{{Z}_{3}}{{Z}_{1}} {Z}_{2} \longrightarrow{Z}_{1} {Z}_{4}={Z}_{2} {Z}_{3}\\\\

\begin{array}{l}\frac{-\mathrm{jR}_{4} \mathrm{R}_{1}}{\omega \mathrm{R}_{4} \mathrm{C}_{4}-\mathrm{j}}=\mathrm{R}_{3}\left(\mathrm{R}_{2}-\frac{\mathrm{j}}{\omega \mathrm{C}_{2}}\right) \\\\\frac{-\mathrm{jR}_{4} \mathrm{R}_{1}\left(\omega \mathrm{R}_{4} \mathrm{C}_{4}+\mathrm{j}\right)}{\omega^{2} \mathrm{R}_{4}^{2} \mathrm{C}_{4}^{2}+1}=\mathrm{R}_{3} \mathrm{R}_{2}-\frac{\mathrm{jR}_{3}}{\omega \mathrm{C}_{2}}\\\end{array}

Equating the real and imaginary components,

\frac{\mathrm{R}_{1} \mathrm{R}_{4}}{\omega^{2} \mathrm{R}_{4}^{2} \mathrm{C}_{4}^{2}+1}=\mathrm{R}_{2} \mathrm{R}_{3}        (1)\\\\ \frac{\omega \mathrm{R}_{1} \mathrm{R}_{4}^{2} \mathrm{C}_{4}}{\omega^{2} \mathrm{R}_{4}^{2} \mathrm{C}_{4}^{2}+1}=\frac{\mathrm{R}_{3}}{\omega \mathrm{C}_{2}}       (2)\\\\\\

Dividing (1) by (2),

\begin{array}{l}\frac{1}{\omega \mathrm{R}_{4} \mathrm{C}_{4}}=\omega \mathrm{R}_{2} \mathrm{C}_{2} \\\\\omega^{2}=\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{R}_{4} \mathrm{C}_{4}} \\\\\omega=2 \pi \mathrm{f}=\frac{1}{\sqrt{\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{R}_{4} \mathrm{C}_{4}}} \\\\{f}=\frac{1}{2 \pi \sqrt{{R}_{2} {R}_{4} \mathrm{C}_{2} \mathrm{C}_{4}}}\end{array}

Related Answered Questions