Question 7.61: The assembly is subjected to a vertical shear of V = 7 kip ....

The assembly is subjected to a vertical shear of V = 7 kip . Determine the shear flow at points A and B and the maximum shear flow in the cross section.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\bar{y}=\frac{\Sigma \bar{y} A}{\Sigma A}=\frac{(0.25)(11)(0.5)+2(3.25)(5.5)(0.5)+6.25(7)(0.5)}{0.5(11)+2(0.5)(5.5)+7(0.5)}=2.8362  \mathrm{in.}

 

I=\frac{1}{12}(11)\left(0.5^{3}\right)+11(0.5)(2.8362-0.25)^{2}+2\left(\frac{1}{12}\right)(0.5)\left(5.5^{3}\right)+2(0.5)(5.5)(3.25-2.8362)^{2}

 

\quad+\frac{1}{12}(7)\left(0.5^{3}\right)+(0.5)(7)(6.25-2.8362)^{2}=92.569  \mathrm{in}^{4}

 

Q_{A}=\bar{y}_{1}^{\prime} A_{1}^{\prime}=(2.5862)(2)(0.5)=2.5862  \mathrm{in}^{3}

 

Q_{B}=\bar{y}_{2}^{\prime} A_{2}^{\prime}=(3.4138)(7)(0.5)=11.9483  \mathrm{in}^{3}

 

Q_{\max }=\Sigma \bar{y}^{\prime} A^{\prime}=(3.4138)(7)(0.5)+2(1.5819)(3.1638)(0.5)=16.9531  \mathrm{in}^{3}

 

q=\frac{V Q}{I}

 

q_{A}=\frac{7\left(10^{3}\right)(2.5862)}{92.569}=196  \mathrm{lb/in} .

 

q_{B}=\frac{1}{2}\left(\frac{7\left(10^{3}\right)(11.9483)}{92.569}\right)=452  \mathrm{lb/in} .

 

q_{\max }=\frac{1}{2}\left(\frac{7\left(10^{3}\right)(16.9531)}{92.569}\right)=641  \mathrm{lb/in}.
2

Related Answered Questions