Question 2.6.19: The bar shown in Fig. 6–37 is machined from a cold-rolled fl...

The bar shown in Fig. 6–37 is machined from a cold-rolled flat having an ultimate strength of S_{ut}= LN\left(87.6,5.74\right) kpsi.

The axial load shown is completely reversed.The load amplitude is F_a= LN\left(1000,120\right) lbf.
(a) Estimate the reliability.
(b) Reestimate the reliability when a rotating bending endurance test shows that S'_e=LN\left(40,2\right) kps.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a) From Eq. (6–70),
\acute{S}_e =\begin{cases} 0.506\bar{S} _{ut} LN\left(1,0,138\right) kpsi \ or MPa & \bar{S} _{ut}\leq 212 \ kpsi \left(1460 \ MPa\right) \ \left(1400 \ MPa\right) \\107 LN\left(1,0,139\right) \ kpsi & \bar{S} _{ut}\gt 212 \ kpsi \\740 LN\left(1,0,139\right) \ Mpa & \bar{S} _{ut}\gt 1460 \ MPa \ \end{cases}
\acute{S}_e= 0.506\bar{S} _{ut} LN\left(1,0,138\right) = 0.506\left(87.6\right) LN\left(1,0.138\right)= 44.3 LN\left(1,0,138\right) \ kpsi
From Eq. (6–72)
k_a=a\bar{S} ^b_{ut} LN \left(1,C\right) \ \ \ \left(\bar{S}_{ut} \ in \ kpsi \ or MPa \right)

and Table 6–10,

Table 6–10
Parameters in Marin Surface Condition Factor
k_a= aS^b_{ut} LN\left(1, C\right)
a Coefficient of
Variation, C
Surface Finish kpsi MPa b
Ground* 1.34 1.58 −0.086 0.12
Machined or Cold-rolled 2.67 4.45 −0.265 0.058
Hot-rolled 14.5 58.1 −0.719 0.11
As-forged 39.8 271 −0.995 0.145

k_a=2.67\bar{S} ^{0.265}_{ut} LN \left(1,0.0.58\right)= 2.67\left(87.6\right) ^{-0.265} LN \left(1,0.0.58\right)\\=0.816 LN\left(1,0.058\right)\\ k_b= 1 (axial loading)

From Eq. (6–73),

\left(k_c\right) _{axial}=1.23\bar{S}^{0.0778}_{ut}LN\left(1,0.125\right) k_c= 1.23\bar{S} ^{-0.0778}_{ut} LN\left(1,0.125\right) = 1.23\left(87.6\right)^{−0.0778}LN(1,0.125)= 0.869 LN\left(1,0.125\right)\\k_d= k_f = \left(1,0\right)

The endurance strength, from Eq. (6–71) is

S_e=k_ak_bk_ck_d\acute{S} _e\\Se=0.816 LN \left(1,0.058\right) LN\left(1,0.125\right)\left(1\right)\left(1\right)44.3 LN\left(1,0.138\right)

The parameters of S_e are
\bar{S}_e=0.816\left(0.869\right) 44.3=31.4\\C_{se}=\left(0.058^2+0.125^2+0.138^2\right)^{{1}/{2}} =0.195

so S_e= 31.4LN(1,0.195) kpsi.
In computing the stress, the section at the hole governs. Using the terminology
of Table A–15–1 we find {d}/{w} = 0.50, therefore K_t.= 2.18. From Table 6–15,

Table 6–15 Heywood’s Parameter √a and coefficients ofvariation C_{Kf} for steels
\sqrt{a} \left(\sqrt{in} \right) \sqrt{a} \left(\sqrt{mm} \right)
Notch Type S_{ut} \ in \ kpsi S_{ut} \ in \  MPa Coefficient of
Variation CKf
Transverse hole {5}/{S_{ut}} {174}/{S_{ut}} 0.10
Shoulder {4}/{S_{ut}} {139}/{S_{ut}} 0.11
Groove {3}/{S_{ut}} {104}/{S_{ut}} 0.15

,
\sqrt{a} = {5}/{Sut}= {5}/{87.6} = 0.0571 \ and C_{kf} = 0.10.
From Eqs. (6–78) and (6–79) withr=0.375 in ,

 

K_f=\frac{K_t}{1+\frac{2\left(K_t-1\right) }{K_t}\frac{\sqrt{a} }{\sqrt{r} } }LN\left(1,C_{K_f}\right) =\frac{2.18}{1+\frac{2\left(2.18-1\right) }{2.18}\frac{0.0571}{\sqrt{0.375} } } LN\left(1,0.10\right)\\=1.98 LN\left(1,0.10\right)

The stress at the hole is

\sigma =K_f\frac{F}{A} =1.98 LN\left(1,0.10\right) \frac{1000 LN\left(1,0.12\right) }{0.25\left(0.75\right) }

 

\bar{\sigma } =1.98\frac{1000}{0.25\left(0.75\right) } 10^{-3}=10.56kpsi

C_\sigma =\left(0.10^2+0.12^2\right) ^{{1}/{2}}=0.156

so stress can be expressed as \sigma = 10.56 LN\left(1,0.156\right) kpsi.
The endurance limit is considerably greater than the load-induced stress, indicating that finite life is not a problem. For interfering lognormal-lognormal distributions,
Eq. (5–43), p. 250, gives

z=-\frac{\ln \left(\frac{\bar{S_e} }{\bar{\sigma } } \sqrt{\frac{1+C^2_\sigma }{1+C^2_{S_e}} } \right) }{\sqrt{\ln \left[\left(1+C^2_{S_e}\right)\left(1+C^2_\sigma \right) \right] } } =-\frac{\ln \left(\frac{31.4 }{10.56} \sqrt{\frac{1+0.156^2 }{1+0.195^2} } \right) }{\sqrt{\ln \left[\left(1+0.195^2\right)\left(1+0.156^2\right) \right] } }=4.37

From Table A–10

Table A–10
Cumulative Distribution Function of Normal (Gaussian) Distribution

\begin{aligned}\Phi\left(z_{\alpha}\right) &=\int_{-\infty}^{z_{\alpha}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) d u \\&=\left\{\begin{array}{ll} \alpha & z_{\alpha} \leq 0 \\1-\alpha & z_{\alpha}>0 \end{array}\right.\end{aligned}

Z_a 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3238 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.119 0.117
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.102 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.063 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

the probability of failure p_f = \Phi \left(−4.37\right) = .000 006 35, and the reliability is

 

R=1-0.0000035=0.99999365

(b) The rotary endurance tests are described by \acute{S}_e=40LN\left(1,0.05\right) kpsi whose mean
is less than the predicted mean in part a. The mean endurance strength \bar{S}_e is

\bar{S}_e = 0.816\left(0.869\right)40=28.4 kpsi

 

C_{se}=\left(0.058^2+0.125^2+0.05^2\right)^{{1}/{2}}=0.147

so the endurance strength can be expressed as S_e= 28.3LN\left(1,0.147\right) kpsi. From Eq. (5–43),

 

z=-\frac{\ln \left(\frac{28.4}{10.56}\sqrt{\frac{1+0.156^2}{1+0.147^2} } \right) }{\sqrt{\ln \left[\left(1+0.147^2\right)\left(1+0.156^2\right) \right] } } =-4.65

Using Table A–10, we see the probability of failure p_f = \Phi \left(−4.65\right) = 0.000 001 71,and

R=1-0.00000171=0.99999829

an increase! The reduction in the probability of failure is {\left( 0.00000171-0.00000635\right) }/{0.00000635}=-0.73, a reduction of 73 percent.
We are analyzing an existing design, so in part (a) the factor of safety was  \bar{n} ={\bar{S} }/{\bar{\sigma }} ={31.4}/{10.56}=2.97.
In part (b)\bar{n} = {28.4}/{10.56} = 2.69,decrease. This example gives you the opportunity toseethe role of the design factor. Given knowledge of\bar{S},C_s,\bar{\sigma },C_{\sigma } and reliability (through z), the mean
factor of safety(as a design factor)separates\bar{S} \ and \ \bar{\sigma } so that there liability goal is achieved.
Knowing \bar{n} alone says nothing about the probability of failure.
Looking at \bar{n} = 2.97 and \bar{n} = 2.69 says nothing about the respective probabilities of failure.
The tests did not reduce \bar{S_e} significantly,but reduced the variation C_ such that there liability was increased.
When a mean design factor (or mean factor of safety) defined as {\bar{S_e} }/{\bar{\sigma }} is said to be silent on matters of frequency of failures, it means that a scalar factor of safety
by itself does not offer any information about probability of failure. Nevertheless,some engineers let the factor of safety speak up, and they can be wrong in their conclusions.

Related Answered Questions